debugVarTool/Src/allvars_xml_parser.py
Razvalyaev 788ad19464 кууууча всего по терминалке, надо резгребать и структурировать
базово:
+сделан lowlevel для кучи переменных (пока работает медленно)
+сделан сохранение принимаемых значений в лог
+ gui терминалок подогнаны под один стиль плюс минус
2025-07-22 18:05:12 +03:00

439 lines
20 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from __future__ import annotations
import sys
import re
import xml.etree.ElementTree as ET
import var_setup
from dataclasses import dataclass, field
from typing import List, Dict, Optional, Tuple
from PySide2.QtWidgets import (
QDialog, QTreeWidget, QTreeWidgetItem, QVBoxLayout, QPushButton,
QLineEdit, QLabel, QHeaderView, QCompleter, QCheckBox, QHBoxLayout, QSizePolicy,
QTableWidget, QTableWidgetItem, QFileDialog, QWidget, QMessageBox, QApplication, QMainWindow
)
from PySide2 import QtCore, QtGui
from path_hints import PathHints
from generate_debug_vars import choose_type_map, type_map
from var_selector_window import VariableSelectorDialog
from typing import List, Tuple, Optional, Dict, Any, Set
DATE_FIELD_SET = {'year','month','day','hour','minute'}
@dataclass
class MemberNode:
name: str
offset: int = 0
type_str: str = ''
size: Optional[int] = None
children: List['MemberNode'] = field(default_factory=list)
# --- новые, но необязательные (совместимость) ---
kind: Optional[str] = None # 'array', 'union', ...
count: Optional[int] = None # size1 (число элементов в массиве)
def is_date_struct(self) -> bool:
if not self.children:
return False
child_names = {c.name for c in self.children}
return DATE_FIELD_SET.issubset(child_names)
@dataclass
class VariableNode:
name: str
address: int
type_str: str
size: Optional[int]
members: List[MemberNode] = field(default_factory=list)
# --- новые, но необязательные ---
kind: Optional[str] = None # 'array'
count: Optional[int] = None # size1
def base_address_hex(self) -> str:
return f"0x{self.address:06X}"
# --------------------------- XML Parser ----------------------------
class VariablesXML:
"""
Reads your XML and outputs a flat list of paths:
- Arrays -> name[i], multilevel -> name[i][j]
- Pointer to struct -> children via '->'
- Regular struct -> children via '.'
"""
# assumed primitive sizes (for STM/MCU: int=2)
_PRIM_SIZE = {
'char':1, 'signed char':1, 'unsigned char':1, 'uint8_t':1, 'int8_t':1,
'short':2, 'short int':2, 'signed short':2, 'unsigned short':2,
'uint16_t':2, 'int16_t':2,
'int':2, 'signed int':2, 'unsigned int':2,
'long':4, 'unsigned long':4, 'int32_t':4, 'uint32_t':4,
'float':4,
'long long':8, 'unsigned long long':8, 'int64_t':8, 'uint64_t':8, 'double':8,
}
def __init__(self, path: str):
self.path = path
self.timestamp: str = ''
self.variables: List[VariableNode] = []
choose_type_map(0)
self._parse()
# ------------------ low helpers ------------------
@staticmethod
def _parse_int_guess(txt: Optional[str]) -> Optional[int]:
if not txt:
return None
txt = txt.strip()
if txt.startswith(('0x','0X')):
return int(txt, 16)
# если в строке есть буквы A-F → возможно hex
if any(c in 'abcdefABCDEF' for c in txt):
try:
return int(txt, 16)
except ValueError:
pass
try:
return int(txt, 10)
except ValueError:
return None
@staticmethod
def _is_pointer_to_struct(t: str) -> bool:
if not t:
return False
low = t.replace('\t',' ').replace('\n',' ')
return 'struct ' in low and '*' in low
@staticmethod
def _is_struct_or_union(t: str) -> bool:
if not t:
return False
low = t.strip()
return low.startswith('struct ') or low.startswith('union ')
@staticmethod
def _strip_array_suffix(t: str) -> str:
return t[:-2].strip() if t.endswith('[]') else t
def _guess_primitive_size(self, type_str: str) -> Optional[int]:
if not type_str:
return None
base = type_str
for tok in ('volatile','const'):
base = base.replace(tok, '')
base = base.replace('*',' ')
base = base.replace('[',' ').replace(']',' ')
base = ' '.join(base.split()).strip()
return self._PRIM_SIZE.get(base)
# ------------------ XML read ------------------
def _parse(self):
try:
tree = ET.parse(self.path)
root = tree.getroot()
ts = root.find('timestamp')
self.timestamp = ts.text.strip() if ts is not None and ts.text else ''
def parse_member(elem) -> MemberNode:
name = elem.get('name','')
offset = int(elem.get('offset','0'),16) if elem.get('offset') else 0
t = elem.get('type','') or ''
size_attr = elem.get('size')
size = int(size_attr,16) if size_attr else None
kind = elem.get('kind')
size1_attr = elem.get('size1')
count = None
if size1_attr:
count = self._parse_int_guess(size1_attr)
node = MemberNode(name=name, offset=offset, type_str=t, size=size,
kind=kind, count=count)
for ch in elem.findall('member'):
node.children.append(parse_member(ch))
return node
for var in root.findall('variable'):
addr = int(var.get('address','0'),16)
name = var.get('name','')
t = var.get('type','') or ''
size_attr = var.get('size')
size = int(size_attr,16) if size_attr else None
kind = var.get('kind')
size1_attr = var.get('size1')
count = None
if size1_attr:
count = self._parse_int_guess(size1_attr)
members = [parse_member(m) for m in var.findall('member')]
self.variables.append(
VariableNode(name=name, address=addr, type_str=t, size=size,
members=members, kind=kind, count=count)
)
except FileNotFoundError:
self.variables = []
except ET.ParseError:
self.variables = []
# ------------------ flatten (expanded) ------------------
def flattened(self,
max_array_elems: Optional[int] = None
) -> List[Dict[str, Any]]:
"""
Returns a list of dictionaries with full data for variables and their expanded members.
Each dictionary contains: 'name', 'address', 'type', 'size', 'kind', 'count'.
max_array_elems: limit unfolding of large arrays (None = all).
"""
out: List[Dict[str, Any]] = []
def get_dict(name: str, address: int, type_str: str, size: Optional[int], kind: Optional[str], count: Optional[int]) -> Dict[str, Any]:
"""Helper to create the output dictionary format."""
return {
'name': name,
'address': address,
'type': type_str,
'size': size,
'kind': kind,
'count': count
}
def compute_stride(size_bytes: Optional[int],
count: Optional[int],
base_type: Optional[str],
node_children: Optional[List[MemberNode]]) -> int:
"""Calculates the stride (size of one element) for arrays."""
# 1) size_bytes/count
if size_bytes and count and count > 0:
if size_bytes % count == 0:
stride = size_bytes // count
if stride <= 0:
stride = 1
return stride
else:
# size not divisible by count → most likely size = size of one element
return max(size_bytes, 1)
# 2) attempt by type (primitive)
if base_type:
gs = self._guess_primitive_size(base_type)
if gs:
return gs
# 3) attempt by children (structure)
if node_children:
if not node_children:
return 1
min_off = min(ch.offset for ch in node_children)
max_end = min_off
for ch in node_children:
sz = ch.size
if not sz:
sz = self._guess_primitive_size(ch.type_str) or 1
end = ch.offset + sz
if end > max_end:
max_end = end
stride = max_end - min_off
if stride > 0:
return stride
return 1
def expand_members(prefix_name: str,
base_addr: int,
members: List[MemberNode],
parent_is_ptr_struct: bool):
"""
Recursively expands members of structs/unions or pointed-to structs.
parent_is_ptr_struct: if True, connection is '->' otherwise '.'
"""
join = '->' if parent_is_ptr_struct else '.'
for m in members:
path_m = f"{prefix_name}{join}{m.name}" if prefix_name else m.name
addr_m = base_addr + m.offset
out.append(get_dict(path_m, addr_m, m.type_str, m.size, m.kind, m.count))
# array?
if (m.kind == 'array') or m.type_str.endswith('[]'):
count = m.count
if count is None:
count = 0
if count <= 0:
continue
base_t = self._strip_array_suffix(m.type_str)
stride = compute_stride(m.size, count, base_t, m.children if m.children else None)
limit = count if max_array_elems is None else min(count, max_array_elems)
for i in range(limit):
path_i = f"{path_m}[{i}]"
addr_i = addr_m + i*stride
# Determine kind for array element based on its base type
elem_kind = None
if self._is_struct_or_union(base_t):
elem_kind = 'struct' # or 'union' depending on `base_t` prefix
elif self._guess_primitive_size(base_t):
elem_kind = 'primitive'
# For array elements, 'size' is the stride (size of one element), 'count' is None.
out.append(get_dict(path_i, addr_i, base_t, stride, elem_kind, None))
# array element: if structure / union → unfold fields
if m.children and self._is_struct_or_union(base_t):
expand_members(path_i, addr_i, m.children, parent_is_ptr_struct=False)
# array element: if pointer to structure
elif self._is_pointer_to_struct(base_t):
# usually no children in XML for these, but if present — use them
expand_members(path_i, addr_i, m.children, parent_is_ptr_struct=True)
continue
# not an array, but has children (e.g., struct/union)
if m.children:
is_ptr_struct = self._is_pointer_to_struct(m.type_str)
expand_members(path_m, addr_m, m.children, parent_is_ptr_struct=is_ptr_struct)
# --- top-level variables ---
for v in self.variables:
out.append(get_dict(v.name, v.address, v.type_str, v.size, v.kind, v.count))
# top-level array?
if (v.kind == 'array') or v.type_str.endswith('[]'):
count = v.count
if count is None:
count = 0
if count > 0:
base_t = self._strip_array_suffix(v.type_str)
stride = compute_stride(v.size, count, base_t, v.members if v.members else None)
limit = count if max_array_elems is None else min(count, max_array_elems)
for i in range(limit):
p = f"{v.name}[{i}]"
a = v.address + i*stride
# Determine kind for array element
elem_kind = None
if self._is_struct_or_union(base_t):
elem_kind = 'struct' # or 'union'
elif self._guess_primitive_size(base_t):
elem_kind = 'primitive'
out.append(get_dict(p, a, base_t, stride, elem_kind, None))
# array of structs?
if v.members and self._is_struct_or_union(base_t):
expand_members(p, a, v.members, parent_is_ptr_struct=False)
# array of pointers to structs?
elif self._is_pointer_to_struct(base_t):
expand_members(p, a, v.members, parent_is_ptr_struct=True)
continue
# top-level not an array, but has members
if v.members:
is_ptr_struct = self._is_pointer_to_struct(v.type_str)
expand_members(v.name, v.address, v.members, parent_is_ptr_struct=is_ptr_struct)
return out
# -------------------- date candidates (as it was) --------------------
def date_struct_candidates(self) -> List[Tuple[str,int]]:
cands = []
for v in self.variables:
# top level (if all date fields are present)
direct_names = {mm.name for mm in v.members}
if DATE_FIELD_SET.issubset(direct_names):
cands.append((v.name, v.address))
# check first-level members
for m in v.members:
if m.is_date_struct():
cands.append((f"{v.name}.{m.name}", v.address + m.offset))
return cands
def get_all_vars_data(self) -> List[Dict[str, Any]]:
"""
Возвращает вложенную структуру словарей с полными данными для всех переменных и их развернутых членов.
Каждый словарь представляет узел в иерархии и содержит:
'name' (полный путь), 'address', 'size', 'type', 'kind', 'count', и 'children' (если есть).
Логика определения родительского пути теперь использует `split_path` для анализа структуры пути.
"""
flat_data = self.flattened(max_array_elems=None)
root_nodes: List[Dict[str, Any]] = []
all_nodes_map: Dict[str, Dict[str, Any]] = {}
for item in flat_data:
node_dict = {**item, 'children': []}
all_nodes_map[item['name']] = node_dict
# Вспомогательная функция для определения полного пути родителя с использованием split_path
def get_parent_path_using_split(full_path: str) -> Optional[str]:
# 1. Используем split_path для получения компонентов пути.
components = var_setup.split_path(full_path)
# Если нет компонентов или только один (верхний уровень, не массивный элемент)
if not components or len(components) == 1:
# Если компонент один и это не индекс массива (например, "project" или "my_var")
# тогда у него нет родителя в этой иерархии.
# Если это был бы "my_array[0]" -> components=['my_array', '[0]'], len=2
if len(components) == 1 and not components[0].startswith('['):
return None
elif len(components) == 2 and components[-1].startswith('['): # like "my_array[0]"
return components[0] # Return "my_array" as parent
else: # Edge cases or malformed, treat as root
return None
# 2. Определяем, как отрезать "хвост" из оригинальной строки `full_path`, чтобы получить родителя.
# Эта логика остаётся похожей на предыдущую, так как `split_path` не включает разделители
# и мы должны получить точную строку родительского пути.
# Находим индекс последнего разделителя '.' или '->'
last_dot_idx = full_path.rfind('.')
last_arrow_idx = full_path.rfind('->')
effective_last_sep_idx = -1
if last_dot_idx > last_arrow_idx:
effective_last_sep_idx = last_dot_idx
elif last_arrow_idx != -1:
effective_last_sep_idx = last_arrow_idx
# Находим начало последнего суффикса массива (e.g., '[0]') в оригинальной строке
array_suffix_match = re.search(r'(\[[^\]]*\])+$', full_path)
array_suffix_start_idx = -1
if array_suffix_match:
array_suffix_start_idx = array_suffix_match.start()
# Логика определения родителя:
# - Если есть суффикс массива, и он находится после последнего разделителя (или разделителей нет),
# то родитель - это часть до суффикса массива. (e.g., 'project.adc[0]' -> 'project.adc')
# - Иначе, если есть разделитель, родитель - это часть до последнего разделителя. (e.g., 'project.adc.bus' -> 'project.adc')
# - Иначе (ни разделителей, ни суффиксов), это корневой элемент.
if array_suffix_start_idx != -1 and (array_suffix_start_idx > effective_last_sep_idx):
return full_path[:array_suffix_start_idx]
elif effective_last_sep_idx != -1:
return full_path[:effective_last_sep_idx]
else:
return None # Корневой элемент без явного родителя
# Основная логика get_all_vars_data
# Заполнение связей "родитель-потомок"
for item_name, node_dict in all_nodes_map.items():
parent_name = get_parent_path_using_split(item_name) # Используем новую вспомогательную функцию
if parent_name and parent_name in all_nodes_map:
all_nodes_map[parent_name]['children'].append(node_dict)
else:
root_nodes.append(node_dict)
# Сортируем корневые узлы и их детей рекурсивно по имени
def sort_nodes(nodes_list: List[Dict[str, Any]]):
nodes_list.sort(key=lambda x: x['name'])
for node in nodes_list:
if node['children']:
sort_nodes(node['children'])
sort_nodes(root_nodes)
return root_nodes