#include "DSP281x_Examples.h" // DSP281x Examples Include File #include "DSP281x_SWPrioritizedIsrLevels.h" // DSP281x Examples Include File #include "DSP281x_Device.h" // DSP281x Headerfile Include File #include "IQmathLib.h" #include #include #include "filter_v1.h" #include "xp_cds_in.h" #include "xp_inc_sensor.h" #include "xp_project.h" #pragma DATA_SECTION(WRotor,".fast_vars"); WRotorValues WRotor = WRotorValues_DEFAULTS; #pragma DATA_SECTION(WRotorPBus,".fast_vars"); WRotorValuesAngle WRotorPBus = WRotorValuesAngle_DEFAULTS; #pragma DATA_SECTION(rotor_error_update_count,".fast_vars"); unsigned int rotor_error_update_count = 0; #define SIZE_BUF_SENSOR_LOGS 32 #pragma DATA_SECTION(sensor_1_zero,".slow_vars"); unsigned int sensor_1_zero[6+4+8][SIZE_BUF_SENSOR_LOGS], count_sensor_1_zero=0; void rotorInit(void) { WRotorPBus.ModeAutoDiscret = 1; } #pragma CODE_SECTION(update_rot_sensors,".fast_run"); void update_rot_sensors(void) { inc_sensor.update_sensors(&inc_sensor); } #define MAX_COUNT_OVERFULL_DISCRET 2250 /////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////// #define LEVEL_VALUE_SENSOR_OVERFULL 65535 #define MAX_COUNT_ERROR_ANALISATOR_SENSOR_PBUS 4000 #pragma CODE_SECTION(AnalisatorRotorSensorPBus,".fast_run"); int AnalisatorRotorSensorPBus(_iq d1, _iq d2, unsigned int *count_overfull_discret, unsigned int *count_zero_discret, _iq *prev_iqTimeRotor, unsigned int *discret_out, unsigned int discret_in, _iq *iqWRotorCalcBeforeRegul, _iq *iqWRotorCalc, int *RotorDirection, int modeS1, int modeS2, int valid_sensor_direct, int valid_sensor_90, unsigned int *error_count ) { int flag_not_ready_rotor, flag_overfull_rotor; _iq iqTimeRotor; static _iq koefW = _IQ(0.05);//0.05 // discret0 = 2 mks // static long long KoefNorm_discret0 = 409600000LL;//((500 000/1024/NORMA_WROTOR) * ((long)2 << 24)); //20 - NORMA_FROTOR 1024*8 = 8129 static long long KoefNorm_discret0 = 102400000LL;//((500 000/4096/NORMA_WROTOR) * ((long)2 << 24)); //20 - NORMA_FROTOR 1024*8 = 8129 // discret1 = 20 ns // static long long KoefNorm_discret1 = 40960000000LL;//((50 000 000/1024/NORMA_WROTOR) * ((long)2 << 24)); //20 - NORMA_FROTOR 1024*8 = 8129 static long long KoefNorm_discret1 = 10240000000LL;//((50 000 000/4096/NORMA_WROTOR) * ((long)2 << 24)); //20 - NORMA_FROTOR 1024*8 = 8129 // _iq iqWRotorSumm;//,iqWRotorCalc; static _iq time_level_discret_1to0 = 60000 ;//682666; // KoefNorm_discret1/60000 = 0.813801288604736328125 Ãö. static _iq time_level_discret_0to1 = 400;//204800; // KoefNorm_discret0/2000 = 0.244140625 Ãö. static unsigned int discret; if (valid_sensor_direct == 0) d1 = 0; if (valid_sensor_90 == 0) d2 = 0; // òóò ÷òî-òî ïîøëî íå òàê, áûëà ñìåíà äèñêðåòèçàöèè ïî îáîèì êàíàëàì. if (valid_sensor_direct == 0 && valid_sensor_90 == 0) { if (*error_count>1; // max OVERFULL if (flag_overfull_rotor) { if (*count_overfull_discret0) (*count_overfull_discret)--; } // zero? if (flag_not_ready_rotor) { if (*count_zero_discret0) (*count_zero_discret)--; } // real zero? if (*count_zero_discret==MAX_COUNT_OVERFULL_DISCRET) { // íîëü áûë ñëèøêîì äîëãî, çíà÷èò òî÷íî íîëü! iqWRotorCalc = 0; *prev_iqTimeRotor = 0; iqTimeRotor = 0; } else { // íîëü åùå íå ñëèøêîì äîëãî, çíà÷èò áåðåì ñòàðîå çíà÷åíèå prev_iqTimeRotor if (iqTimeRotor==0) iqTimeRotor = *prev_iqTimeRotor; } *prev_iqTimeRotor = iqTimeRotor; // âûáîð íóæíîãî äèàïàçîíà if (WRotorPBus.ModeAutoDiscret==1) { if ( (*count_overfull_discret==MAX_COUNT_OVERFULL_DISCRET) || (iqTimeRotor==0) ) { // òóò èëè ïåðåïîëíåíèå ïðîèçîøëî èëè âäðóã îñòàíîâèëèñü, îáîðîòû=0 // òîãäà âêëþ÷àåì discret_out = 0 if (discret_in == 1) // èëè òóò íàäî èñïëüçîâàòü discret? { // discret áûë =1, ïåðåêëþ÷àåì íà 0. *discret_out = 0; *count_overfull_discret = 0; // äàëè åùå îäèí øàíñ! } } else { // òåêóù. óðîâåíü discret==0 òîãäà... if (discret==0 && iqTimeRotortime_level_discret_1to0 && iqTimeRotor!=65535) *discret_out = 0; } } if (WRotorPBus.ModeAutoDiscret==2) { *discret_out = 0; } if (WRotorPBus.ModeAutoDiscret==3) { *discret_out = 1; } if ( (*count_overfull_discret==MAX_COUNT_OVERFULL_DISCRET) ) { // òóò óæå òî÷íî â 0, ò.ê. ñëèøêîì ìåäëåííî èäóò èìïóëüñû! *prev_iqTimeRotor = iqTimeRotor = 0; } if ((iqTimeRotor != 0)) // && (WRotorPBus.iqTimeRotor<65535) { if (discret==0) *iqWRotorCalcBeforeRegul = KoefNorm_discret0 / iqTimeRotor; if (discret==1) *iqWRotorCalcBeforeRegul = KoefNorm_discret1 / iqTimeRotor; *iqWRotorCalc = exp_regul_iq(koefW, *iqWRotorCalc, *iqWRotorCalcBeforeRegul); } else { *iqWRotorCalc = 0; *iqWRotorCalcBeforeRegul = 0; } if (*iqWRotorCalc == 0) *RotorDirection = 0; return 0; } /////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////// #pragma CODE_SECTION(RotorMeasurePBus,".fast_run"); void RotorMeasurePBus(void) { // discret0 = 2 mks // static long long KoefNorm_discret0 = 409600000LL;//((500 000/1024/NORMA_WROTOR) * ((long)2 << 24)); //20 - NORMA_FROTOR 1024*8 = 8129 static long long KoefNorm_discret0 = 102400000LL;//((500 000/4096/NORMA_WROTOR) * ((long)2 << 24)); //20 - NORMA_FROTOR 1024*8 = 8129 // discret1 = 20 ns // static long long KoefNorm_discret1 = 40960000000LL;//((50 000 000/1024/NORMA_WROTOR) * ((long)2 << 24)); //20 - NORMA_FROTOR 1024*8 = 8129 static long long KoefNorm_discret1 = 10240000000LL;//((50 000 000/4096/NORMA_WROTOR) * ((long)2 << 24)); //20 - NORMA_FROTOR 1024*8 = 8129 static _iq time_level_discret_1to0 = 60000 ;//682666; // KoefNorm_discret1/60000 = 0.813801288604736328125 Ãö. static _iq time_level_discret_0to1 = 400;//204800; // KoefNorm_discret0/2000 = 0.244140625 Ãö. static long long KoefNorm_angle = 16384LL; //2^24/1024 volatile float MyVar0 = 0; unsigned int MyVar3 = 0; int direction1 = 0, direction2 = 0; volatile unsigned int discret; static unsigned int discret_out1, discret_out2; static int count_full_oborots = 0; static unsigned int count_overfull_discret1 = 0; static unsigned int count_zero_discret1 = 0; static unsigned int count_overfull_discret2 = 0; static unsigned int count_zero_discret2 = 0; static unsigned int count_discret_to_1 = 0; static unsigned int count_discret_to_0 = 0; static unsigned int c_error_pbus_1 = 0; static unsigned int c_error_pbus_2 = 0; static _iq prev_iqTimeRotor1 = 0, prev_iqTimeRotor2 = 0; _iq iqWRotorSumm = 0; _iq koefW = _IQ(0.05);//0.05 int flag_not_ready_rotor1, flag_overfull_rotor1; int flag_not_ready_rotor2, flag_overfull_rotor2; //i_led1_on_off(1); flag_not_ready_rotor1 = 0; flag_overfull_rotor1 = 0; flag_not_ready_rotor2 = 0; flag_overfull_rotor2 = 0; #if(C_cds_in_number>=1) project.cds_in[0].read_pbus(&project.cds_in[0]); #endif discret = project.cds_in[0].read.sbus.enabled_channels.bit.discret; if (project.cds_in[0].read.sbus.enabled_channels.bit.discret != project.cds_in[0].write.sbus.enabled_channels.bit.discret) discret = 2; sensor_1_zero[0][count_sensor_1_zero] = project.cds_in[0].read.pbus.Time_since_zero_point_S1; sensor_1_zero[1][count_sensor_1_zero] = project.cds_in[0].read.pbus.Impulses_since_zero_point_Rising_S1; sensor_1_zero[2][count_sensor_1_zero] = project.cds_in[0].read.pbus.Impulses_since_zero_point_Falling_S1; sensor_1_zero[3][count_sensor_1_zero] = project.cds_in[0].read.pbus.Time_since_zero_point_S2; sensor_1_zero[4][count_sensor_1_zero] = project.cds_in[0].read.pbus.Impulses_since_zero_point_Rising_S2; sensor_1_zero[5][count_sensor_1_zero] = project.cds_in[0].read.pbus.Impulses_since_zero_point_Falling_S2; sensor_1_zero[6][count_sensor_1_zero] = project.cds_in[0].read.pbus.SpeedS1_cnt; sensor_1_zero[7][count_sensor_1_zero] = project.cds_in[0].read.pbus.SpeedS1_cnt90; sensor_1_zero[8][count_sensor_1_zero] = project.cds_in[0].read.pbus.SpeedS2_cnt; sensor_1_zero[9][count_sensor_1_zero] = project.cds_in[0].read.pbus.SpeedS2_cnt90; sensor_1_zero[10][count_sensor_1_zero] = inc_sensor.data.Time1; sensor_1_zero[11][count_sensor_1_zero] = inc_sensor.data.Impulses1; sensor_1_zero[12][count_sensor_1_zero] = inc_sensor.data.CountZero1; sensor_1_zero[13][count_sensor_1_zero] = inc_sensor.data.CountOne1; sensor_1_zero[14][count_sensor_1_zero] = inc_sensor.data.Time2; sensor_1_zero[15][count_sensor_1_zero] = inc_sensor.data.Impulses2; sensor_1_zero[16][count_sensor_1_zero] = inc_sensor.data.CountZero2; sensor_1_zero[17][count_sensor_1_zero] = inc_sensor.data.CountOne2; count_sensor_1_zero++; if (count_sensor_1_zero>=SIZE_BUF_SENSOR_LOGS) { count_sensor_1_zero = 0; count_full_oborots++; if (count_full_oborots>3) count_full_oborots = 0; } /* if (count_sensor_1_zero==904) { discret = 3; } */ #if (ENABLE_ROTOR_SENSOR_1==1) WRotorPBus.iqWRotorRawAngle1F = project.cds_in[0].read.pbus.Impulses_since_zero_point_Falling_S1-32768; WRotorPBus.iqWRotorRawAngle1R = project.cds_in[0].read.pbus.Impulses_since_zero_point_Rising_S1-32768; WRotorPBus.iqAngle1F = KoefNorm_angle * WRotorPBus.iqWRotorRawAngle1F; WRotorPBus.iqAngle1R = KoefNorm_angle * WRotorPBus.iqWRotorRawAngle1R; #else WRotorPBus.iqWRotorRawAngle1F = 0; WRotorPBus.iqWRotorRawAngle1R = 0; WRotorPBus.iqAngle1F = 0; WRotorPBus.iqAngle1R = 0; #endif #if (ENABLE_ROTOR_SENSOR_2==1) WRotorPBus.iqWRotorRawAngle2F = project.cds_in[0].read.pbus.Impulses_since_zero_point_Falling_S2-32768; WRotorPBus.iqWRotorRawAngle2R = project.cds_in[0].read.pbus.Impulses_since_zero_point_Rising_S2-32768; WRotorPBus.iqAngle2F = KoefNorm_angle * WRotorPBus.iqWRotorRawAngle2F; WRotorPBus.iqAngle2R = KoefNorm_angle * WRotorPBus.iqWRotorRawAngle2R; #else WRotorPBus.iqWRotorRawAngle2F = 0; WRotorPBus.iqWRotorRawAngle2R = 0; WRotorPBus.iqAngle2F = 0; WRotorPBus.iqAngle2R = 0; #endif #if (ENABLE_ROTOR_SENSOR_1==1) //************************************************************************************************** MyVar3 = project.cds_in[0].read.pbus.SpeedS1_cnt; if ((MyVar3 <= COUNT_DECODER_ZERO_WROTORPBus) && (MyVar3 > COUNT_DECODER_MAX_WROTOR)) { WRotorPBus.iqWRotorRaw0 = MyVar3; } else { WRotorPBus.iqWRotorRaw0 = 0; } MyVar3 = project.cds_in[0].read.pbus.SpeedS1_cnt90; if ((MyVar3 <= COUNT_DECODER_ZERO_WROTORPBus) && (MyVar3 > COUNT_DECODER_MAX_WROTOR)) { WRotorPBus.iqWRotorRaw1 = MyVar3; } else { WRotorPBus.iqWRotorRaw1 = 0; } #else WRotorPBus.iqWRotorRaw0 = 0; WRotorPBus.iqWRotorRaw1 = 0; #endif #if (ENABLE_ROTOR_SENSOR_2==1) //*************************************************************************************************** MyVar3 = project.cds_in[0].read.pbus.SpeedS2_cnt; if ((MyVar3 <= COUNT_DECODER_ZERO_WROTORPBus) && (MyVar3 > COUNT_DECODER_MAX_WROTOR)) { WRotorPBus.iqWRotorRaw2 = MyVar3; } else { WRotorPBus.iqWRotorRaw2 = 0; } MyVar3 = project.cds_in[0].read.pbus.SpeedS2_cnt90; if ((MyVar3 <= COUNT_DECODER_ZERO_WROTORPBus) && (MyVar3 > COUNT_DECODER_MAX_WROTOR)) { WRotorPBus.iqWRotorRaw3 = MyVar3; } else { WRotorPBus.iqWRotorRaw3 = 0; } #else WRotorPBus.iqWRotorRaw2 = 0; WRotorPBus.iqWRotorRaw3 = 0; #endif #if (ENABLE_ROTOR_SENSOR_1==1) // if (project.cds_in[0].read.pbus.direction_in.bit.value_vaild_sensor1_direct && project.cds_in[0].read.pbus.direction_in.bit.value_vaild_sensor1_90 ) AnalisatorRotorSensorPBus(WRotorPBus.iqWRotorRaw0, WRotorPBus.iqWRotorRaw1, &count_overfull_discret1, &count_zero_discret1, &prev_iqTimeRotor1, &discret_out1, project.cds_in[0].read.sbus.enabled_channels.bit.discret, &WRotorPBus.iqWRotorCalcBeforeRegul1, &WRotorPBus.iqWRotorCalc1, &WRotorPBus.RotorDirection1, project.cds_in[0].read.pbus.direction_in.bit.mode_sensor1_direct, project.cds_in[0].read.pbus.direction_in.bit.mode_sensor1_90, project.cds_in[0].read.pbus.direction_in.bit.value_vaild_sensor1_direct, project.cds_in[0].read.pbus.direction_in.bit.value_vaild_sensor1_90, &c_error_pbus_1 ); #endif #if (ENABLE_ROTOR_SENSOR_2==1) // if (project.cds_in[0].read.pbus.direction_in.bit.value_vaild_sensor2_direct && project.cds_in[0].read.pbus.direction_in.bit.value_vaild_sensor2_90 ) AnalisatorRotorSensorPBus(WRotorPBus.iqWRotorRaw2, WRotorPBus.iqWRotorRaw3, &count_overfull_discret2, &count_zero_discret2, &prev_iqTimeRotor2, &discret_out2, project.cds_in[0].read.sbus.enabled_channels.bit.discret, &WRotorPBus.iqWRotorCalcBeforeRegul2, &WRotorPBus.iqWRotorCalc2, &WRotorPBus.RotorDirection2, project.cds_in[0].read.pbus.direction_in.bit.mode_sensor2_direct, project.cds_in[0].read.pbus.direction_in.bit.mode_sensor2_90, project.cds_in[0].read.pbus.direction_in.bit.value_vaild_sensor2_direct, project.cds_in[0].read.pbus.direction_in.bit.value_vaild_sensor2_90, &c_error_pbus_2); #endif if (discret_out1==1 || discret_out2==1) { project.cds_in[0].write.sbus.enabled_channels.bit.discret = 1; count_discret_to_1++; } else { project.cds_in[0].write.sbus.enabled_channels.bit.discret = 0; count_discret_to_0++; } } #pragma CODE_SECTION(RotorMeasure,".fast_run"); void RotorMeasure(void) { // 600 Khz clock on every edge // static long long KoefNorm = 53635601LL;//((600 000/6256/NORMA_WROTOR/2) * ((long)2 << 24)); //15 - NormaWRotor 782*8 = 6256 // static long long KoefNormMS = 491520000LL;//((600 000/1024/NORMA_WROTOR) * ((long)2 << 24)); //20 - NORMA_FROTOR 1024*8 = 8129 // static long long KoefNormNS = 49152000000LL;//((60 000 000/1024/NORMA_WROTOR) * ((long)2 << 24)); //20 - NORMA_FROTOR 1024*8 = 8129 static long long KoefNormMS = 122880000LL;//((600 000/4096/NORMA_WROTOR) * ((long)2 << 24)); //20 - NORMA_FROTOR 1024*8 = 8129 static long long KoefNormNS = 12288000000LL;//((60 000 000/4096/NORMA_WROTOR) * ((long)2 << 24)); //20 - NORMA_FROTOR 1024*8 = 8129 static long long KoefNormImpulses = 838860800000000LL;// (2^24 * 1000000000 / (Impulses(ns)) / NORMA_WROTOR volatile float MyVar0 = 0; // volatile unsigned int MyVar1 = 0; // volatile unsigned int MyVar2 = 0; unsigned int MyVar3 = 0; int direction1 = 0, direction2 = 0; _iq koefW = _IQ(0.05);//0.05 inc_sensor.read_sensors(&inc_sensor); // rotation_sensor.read_sensors(&rotation_sensor); // if(rotation_sensor.in_plane.read.regs.comand_reg.bit.update_registers) // { // rotor_error_update_count ++; // } // WRotor.RotorDirection = (rotation_sensor.in_plane.out.direction1 + rotation_sensor.in_plane.out.direction2) > 0 ? 1 : // (rotation_sensor.in_plane.out.direction1 + rotation_sensor.in_plane.out.direction2) < 0 ? -1 : // 0; // // direction1 = rotation_sensor.in_plane.cds_in->read.pbus.direction_in.bit.dir0 == 2 ? 1 : // rotation_sensor.in_plane.cds_in->read.pbus.direction_in.bit.dir0 == 1 ? -1 : // 0; // direction2 = rotation_sensor.in_plane.cds_in->read.pbus.direction_in.bit.dir1 == 2 ? 1 : // rotation_sensor.in_plane.cds_in->read.pbus.direction_in.bit.dir1 == 1 ? -1 : // 0; // WRotor.RotorDirection = (direction1 + direction2) > 0 ? 1 : // (direction1 + direction2) < 0 ? -1 : // 0; //************************************************************************************************** // sensor 1 // if((rotation_sensor.in_plane.out.CountOne1 <= 200) // || rotation_sensor.in_plane.out.CountOne1 == 65535) // { rotation_sensor.in_plane.out.CountOne1 = 0; } // if((rotation_sensor.in_plane.out.CountZero1 <= 200) // || rotation_sensor.in_plane.out.CountZero1 == 65535) // { rotation_sensor.in_plane.out.CountZero1 = 0; } if (inc_sensor.use_sensor1) { MyVar3 = inc_sensor.data.CountOne1; // MyVar3 = (unsigned long) rotation_sensor.in_plane.out.CountOne1; if ((MyVar3 < COUNT_DECODER_ZERO_WROTOR) && (MyVar3 > COUNT_DECODER_MAX_WROTOR)) { WRotor.iqWRotorRaw0 = MyVar3; // WRotor.iqWRotorRaw0 = KoefNorm / MyVar3; // MyVar0 = 9590 / MyVar0;//100000 / MyVar0; // 100000 = 60MHz/Impulses, Balzam: Dents = 600, Impuls per dent = 1; Pr 162 : Dents = 782, Impuls per dent = 8 // WRotor.iqWRotorRaw0 = _IQ(MyVar0/NORMA_WROTOR); } else { WRotor.iqWRotorRaw0 = 0; } // MyVar3 = (unsigned long) rotation_sensor.in_plane.out.CountZero1; MyVar3 = inc_sensor.data.CountZero1; if ((MyVar3 < COUNT_DECODER_ZERO_WROTOR) && (MyVar3 > COUNT_DECODER_MAX_WROTOR)) { WRotor.iqWRotorRaw1 = MyVar3; } else { WRotor.iqWRotorRaw1 = 0; } } else { WRotor.iqWRotorRaw0 = 0; WRotor.iqWRotorRaw1 = 0; } //logpar.uns_log0 = (Uint16)(my_var1); //logpar.uns_log1 = (Uint16)(my_var2); //*************************************************************************************************** // sensor 2 // if((rotation_sensor.in_plane.out.CountOne2 <= 200)// && !rotation_sensor.in_plane.out.counter_freq2) // || rotation_sensor.in_plane.out.CountOne2 == 65535) // { rotation_sensor.in_plane.out.CountOne2 = 0; } // if((rotation_sensor.in_plane.out.CountZero2 <= 200)// && !rotation_sensor.in_plane.out.counter_freq2) // || rotation_sensor.in_plane.out.CountZero2 == 65535) // { rotation_sensor.in_plane.out.CountZero2 = 0; } if (inc_sensor.use_sensor2) { MyVar3 = inc_sensor.data.CountOne2; if ((MyVar3 < COUNT_DECODER_ZERO_WROTOR) && (MyVar3 > COUNT_DECODER_MAX_WROTOR)) { WRotor.iqWRotorRaw2 = MyVar3; } else { WRotor.iqWRotorRaw2 = 0; } MyVar3 = inc_sensor.data.CountZero2; if ((MyVar3 < COUNT_DECODER_ZERO_WROTOR) && (MyVar3 > COUNT_DECODER_MAX_WROTOR)) { WRotor.iqWRotorRaw3 = MyVar3; } else { WRotor.iqWRotorRaw3 = 0; } // i_led1_on_off(0); } else { WRotor.iqWRotorRaw2 = 0; WRotor.iqWRotorRaw3 = 0; } WRotor.iqTimeSensor1 = WRotor.iqWRotorRaw0 + WRotor.iqWRotorRaw1; WRotor.iqTimeSensor2 = WRotor.iqWRotorRaw2 + WRotor.iqWRotorRaw3; if (WRotor.iqTimeSensor1 != 0 && inc_sensor.use_sensor1) { if (inc_sensor.pm67regs.read_comand_reg.bit.sampling_time1==0) WRotor.iqWRotorCalcBeforeRegul1 = KoefNormMS / WRotor.iqTimeSensor1; if (inc_sensor.pm67regs.read_comand_reg.bit.sampling_time1==1) WRotor.iqWRotorCalcBeforeRegul1 = KoefNormNS / WRotor.iqTimeSensor1; WRotor.iqWRotorCalc1 = exp_regul_iq(koefW, WRotor.iqWRotorCalc1, WRotor.iqWRotorCalcBeforeRegul1); } else { WRotor.iqWRotorCalc1 = 0; WRotor.iqWRotorCalcBeforeRegul1 = 0; } if (WRotor.iqTimeSensor2 != 0 && inc_sensor.use_sensor2) { if (inc_sensor.pm67regs.read_comand_reg.bit.sampling_time2==0) WRotor.iqWRotorCalcBeforeRegul2 = KoefNormMS / WRotor.iqTimeSensor2; if (inc_sensor.pm67regs.read_comand_reg.bit.sampling_time2==1) WRotor.iqWRotorCalcBeforeRegul2 = KoefNormNS / WRotor.iqTimeSensor2; WRotor.iqWRotorCalc2 = exp_regul_iq(koefW, WRotor.iqWRotorCalc2, WRotor.iqWRotorCalcBeforeRegul2); } else { WRotor.iqWRotorCalc2 = 0; WRotor.iqWRotorCalcBeforeRegul2 = 0; } if (inc_sensor.data.TimeCalcFromImpulses1 && inc_sensor.use_sensor1) WRotor.iqWRotorImpulses1 = (long long) KoefNormImpulses / (inc_sensor.data.TimeCalcFromImpulses1 * ROTOR_SENSOR_IMPULSES_PER_ROTATE); else WRotor.iqWRotorImpulses1 = 0; if (inc_sensor.data.TimeCalcFromImpulses2 && inc_sensor.use_sensor2) WRotor.iqWRotorImpulses2 = (long long) KoefNormImpulses / (inc_sensor.data.TimeCalcFromImpulses2 * ROTOR_SENSOR_IMPULSES_PER_ROTATE); else WRotor.iqWRotorImpulses2 = 0; // WRotor.iqWRotorCalcBeforeRegul = _IQdiv(WRotor.iqWRotorCalcBeforeRegul,IQ_CONST_3); // i_led1_on_off(0); if (WRotor.iqWRotorCalc1 == 0 && inc_sensor.use_sensor1) WRotor.RotorDirection1 = 0; if (WRotor.iqWRotorCalc2 == 0 && inc_sensor.use_sensor2) WRotor.RotorDirection2 = 0; //wrotor.iq_wrotor_calc = 0; //i_led2_on_off(0); }