This commit is contained in:
2025-06-26 21:04:59 +03:00
parent c5ea733074
commit a27b6bcb50
30 changed files with 26216 additions and 115 deletions

View File

@@ -0,0 +1,2436 @@
/**
******************************************************************************
* @file stm32f1xx_hal_can.c
* @author MCD Application Team
* @brief CAN HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Controller Area Network (CAN) peripheral:
* + Initialization and de-initialization functions
* + Configuration functions
* + Control functions
* + Interrupts management
* + Callbacks functions
* + Peripheral State and Error functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
(#) Initialize the CAN low level resources by implementing the
HAL_CAN_MspInit():
(++) Enable the CAN interface clock using __HAL_RCC_CANx_CLK_ENABLE()
(++) Configure CAN pins
(+++) Enable the clock for the CAN GPIOs
(+++) Configure CAN pins as alternate function
(++) In case of using interrupts (e.g. HAL_CAN_ActivateNotification())
(+++) Configure the CAN interrupt priority using
HAL_NVIC_SetPriority()
(+++) Enable the CAN IRQ handler using HAL_NVIC_EnableIRQ()
(+++) In CAN IRQ handler, call HAL_CAN_IRQHandler()
(#) Initialize the CAN peripheral using HAL_CAN_Init() function. This
function resorts to HAL_CAN_MspInit() for low-level initialization.
(#) Configure the reception filters using the following configuration
functions:
(++) HAL_CAN_ConfigFilter()
(#) Start the CAN module using HAL_CAN_Start() function. At this level
the node is active on the bus: it receive messages, and can send
messages.
(#) To manage messages transmission, the following Tx control functions
can be used:
(++) HAL_CAN_AddTxMessage() to request transmission of a new
message.
(++) HAL_CAN_AbortTxRequest() to abort transmission of a pending
message.
(++) HAL_CAN_GetTxMailboxesFreeLevel() to get the number of free Tx
mailboxes.
(++) HAL_CAN_IsTxMessagePending() to check if a message is pending
in a Tx mailbox.
(++) HAL_CAN_GetTxTimestamp() to get the timestamp of Tx message
sent, if time triggered communication mode is enabled.
(#) When a message is received into the CAN Rx FIFOs, it can be retrieved
using the HAL_CAN_GetRxMessage() function. The function
HAL_CAN_GetRxFifoFillLevel() allows to know how many Rx message are
stored in the Rx Fifo.
(#) Calling the HAL_CAN_Stop() function stops the CAN module.
(#) The deinitialization is achieved with HAL_CAN_DeInit() function.
*** Polling mode operation ***
==============================
[..]
(#) Reception:
(++) Monitor reception of message using HAL_CAN_GetRxFifoFillLevel()
until at least one message is received.
(++) Then get the message using HAL_CAN_GetRxMessage().
(#) Transmission:
(++) Monitor the Tx mailboxes availability until at least one Tx
mailbox is free, using HAL_CAN_GetTxMailboxesFreeLevel().
(++) Then request transmission of a message using
HAL_CAN_AddTxMessage().
*** Interrupt mode operation ***
================================
[..]
(#) Notifications are activated using HAL_CAN_ActivateNotification()
function. Then, the process can be controlled through the
available user callbacks: HAL_CAN_xxxCallback(), using same APIs
HAL_CAN_GetRxMessage() and HAL_CAN_AddTxMessage().
(#) Notifications can be deactivated using
HAL_CAN_DeactivateNotification() function.
(#) Special care should be taken for CAN_IT_RX_FIFO0_MSG_PENDING and
CAN_IT_RX_FIFO1_MSG_PENDING notifications. These notifications trig
the callbacks HAL_CAN_RxFIFO0MsgPendingCallback() and
HAL_CAN_RxFIFO1MsgPendingCallback(). User has two possible options
here.
(++) Directly get the Rx message in the callback, using
HAL_CAN_GetRxMessage().
(++) Or deactivate the notification in the callback without
getting the Rx message. The Rx message can then be got later
using HAL_CAN_GetRxMessage(). Once the Rx message have been
read, the notification can be activated again.
*** Sleep mode ***
==================
[..]
(#) The CAN peripheral can be put in sleep mode (low power), using
HAL_CAN_RequestSleep(). The sleep mode will be entered as soon as the
current CAN activity (transmission or reception of a CAN frame) will
be completed.
(#) A notification can be activated to be informed when the sleep mode
will be entered.
(#) It can be checked if the sleep mode is entered using
HAL_CAN_IsSleepActive().
Note that the CAN state (accessible from the API HAL_CAN_GetState())
is HAL_CAN_STATE_SLEEP_PENDING as soon as the sleep mode request is
submitted (the sleep mode is not yet entered), and become
HAL_CAN_STATE_SLEEP_ACTIVE when the sleep mode is effective.
(#) The wake-up from sleep mode can be triggered by two ways:
(++) Using HAL_CAN_WakeUp(). When returning from this function,
the sleep mode is exited (if return status is HAL_OK).
(++) When a start of Rx CAN frame is detected by the CAN peripheral,
if automatic wake up mode is enabled.
*** Callback registration ***
=============================================
The compilation define USE_HAL_CAN_REGISTER_CALLBACKS when set to 1
allows the user to configure dynamically the driver callbacks.
Use Function HAL_CAN_RegisterCallback() to register an interrupt callback.
Function HAL_CAN_RegisterCallback() allows to register following callbacks:
(+) TxMailbox0CompleteCallback : Tx Mailbox 0 Complete Callback.
(+) TxMailbox1CompleteCallback : Tx Mailbox 1 Complete Callback.
(+) TxMailbox2CompleteCallback : Tx Mailbox 2 Complete Callback.
(+) TxMailbox0AbortCallback : Tx Mailbox 0 Abort Callback.
(+) TxMailbox1AbortCallback : Tx Mailbox 1 Abort Callback.
(+) TxMailbox2AbortCallback : Tx Mailbox 2 Abort Callback.
(+) RxFifo0MsgPendingCallback : Rx Fifo 0 Message Pending Callback.
(+) RxFifo0FullCallback : Rx Fifo 0 Full Callback.
(+) RxFifo1MsgPendingCallback : Rx Fifo 1 Message Pending Callback.
(+) RxFifo1FullCallback : Rx Fifo 1 Full Callback.
(+) SleepCallback : Sleep Callback.
(+) WakeUpFromRxMsgCallback : Wake Up From Rx Message Callback.
(+) ErrorCallback : Error Callback.
(+) MspInitCallback : CAN MspInit.
(+) MspDeInitCallback : CAN MspDeInit.
This function takes as parameters the HAL peripheral handle, the Callback ID
and a pointer to the user callback function.
Use function HAL_CAN_UnRegisterCallback() to reset a callback to the default
weak function.
HAL_CAN_UnRegisterCallback takes as parameters the HAL peripheral handle,
and the Callback ID.
This function allows to reset following callbacks:
(+) TxMailbox0CompleteCallback : Tx Mailbox 0 Complete Callback.
(+) TxMailbox1CompleteCallback : Tx Mailbox 1 Complete Callback.
(+) TxMailbox2CompleteCallback : Tx Mailbox 2 Complete Callback.
(+) TxMailbox0AbortCallback : Tx Mailbox 0 Abort Callback.
(+) TxMailbox1AbortCallback : Tx Mailbox 1 Abort Callback.
(+) TxMailbox2AbortCallback : Tx Mailbox 2 Abort Callback.
(+) RxFifo0MsgPendingCallback : Rx Fifo 0 Message Pending Callback.
(+) RxFifo0FullCallback : Rx Fifo 0 Full Callback.
(+) RxFifo1MsgPendingCallback : Rx Fifo 1 Message Pending Callback.
(+) RxFifo1FullCallback : Rx Fifo 1 Full Callback.
(+) SleepCallback : Sleep Callback.
(+) WakeUpFromRxMsgCallback : Wake Up From Rx Message Callback.
(+) ErrorCallback : Error Callback.
(+) MspInitCallback : CAN MspInit.
(+) MspDeInitCallback : CAN MspDeInit.
By default, after the HAL_CAN_Init() and when the state is HAL_CAN_STATE_RESET,
all callbacks are set to the corresponding weak functions:
example HAL_CAN_ErrorCallback().
Exception done for MspInit and MspDeInit functions that are
reset to the legacy weak function in the HAL_CAN_Init()/ HAL_CAN_DeInit() only when
these callbacks are null (not registered beforehand).
if not, MspInit or MspDeInit are not null, the HAL_CAN_Init()/ HAL_CAN_DeInit()
keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
Callbacks can be registered/unregistered in HAL_CAN_STATE_READY state only.
Exception done MspInit/MspDeInit that can be registered/unregistered
in HAL_CAN_STATE_READY or HAL_CAN_STATE_RESET state,
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
In that case first register the MspInit/MspDeInit user callbacks
using HAL_CAN_RegisterCallback() before calling HAL_CAN_DeInit()
or HAL_CAN_Init() function.
When The compilation define USE_HAL_CAN_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registration feature is not available and all callbacks
are set to the corresponding weak functions.
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
#if defined(CAN1)
/** @defgroup CAN CAN
* @brief CAN driver modules
* @{
*/
#ifdef HAL_CAN_MODULE_ENABLED
#ifdef HAL_CAN_LEGACY_MODULE_ENABLED
#error "The CAN driver cannot be used with its legacy, Please enable only one CAN module at once"
#endif /* HAL_CAN_LEGACY_MODULE_ENABLED */
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup CAN_Private_Constants CAN Private Constants
* @{
*/
#define CAN_TIMEOUT_VALUE 10U
#define CAN_WAKEUP_TIMEOUT_COUNTER 1000000U
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup CAN_Exported_Functions CAN Exported Functions
* @{
*/
/** @defgroup CAN_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### Initialization and de-initialization functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) HAL_CAN_Init : Initialize and configure the CAN.
(+) HAL_CAN_DeInit : De-initialize the CAN.
(+) HAL_CAN_MspInit : Initialize the CAN MSP.
(+) HAL_CAN_MspDeInit : DeInitialize the CAN MSP.
@endverbatim
* @{
*/
/**
* @brief Initializes the CAN peripheral according to the specified
* parameters in the CAN_InitStruct.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_Init(CAN_HandleTypeDef *hcan)
{
uint32_t tickstart;
/* Check CAN handle */
if (hcan == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_CAN_ALL_INSTANCE(hcan->Instance));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.TimeTriggeredMode));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.AutoBusOff));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.AutoWakeUp));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.AutoRetransmission));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.ReceiveFifoLocked));
assert_param(IS_FUNCTIONAL_STATE(hcan->Init.TransmitFifoPriority));
assert_param(IS_CAN_MODE(hcan->Init.Mode));
assert_param(IS_CAN_SJW(hcan->Init.SyncJumpWidth));
assert_param(IS_CAN_BS1(hcan->Init.TimeSeg1));
assert_param(IS_CAN_BS2(hcan->Init.TimeSeg2));
assert_param(IS_CAN_PRESCALER(hcan->Init.Prescaler));
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
if (hcan->State == HAL_CAN_STATE_RESET)
{
/* Reset callbacks to legacy functions */
hcan->RxFifo0MsgPendingCallback = HAL_CAN_RxFifo0MsgPendingCallback; /* Legacy weak RxFifo0MsgPendingCallback */
hcan->RxFifo0FullCallback = HAL_CAN_RxFifo0FullCallback; /* Legacy weak RxFifo0FullCallback */
hcan->RxFifo1MsgPendingCallback = HAL_CAN_RxFifo1MsgPendingCallback; /* Legacy weak RxFifo1MsgPendingCallback */
hcan->RxFifo1FullCallback = HAL_CAN_RxFifo1FullCallback; /* Legacy weak RxFifo1FullCallback */
hcan->TxMailbox0CompleteCallback = HAL_CAN_TxMailbox0CompleteCallback; /* Legacy weak TxMailbox0CompleteCallback */
hcan->TxMailbox1CompleteCallback = HAL_CAN_TxMailbox1CompleteCallback; /* Legacy weak TxMailbox1CompleteCallback */
hcan->TxMailbox2CompleteCallback = HAL_CAN_TxMailbox2CompleteCallback; /* Legacy weak TxMailbox2CompleteCallback */
hcan->TxMailbox0AbortCallback = HAL_CAN_TxMailbox0AbortCallback; /* Legacy weak TxMailbox0AbortCallback */
hcan->TxMailbox1AbortCallback = HAL_CAN_TxMailbox1AbortCallback; /* Legacy weak TxMailbox1AbortCallback */
hcan->TxMailbox2AbortCallback = HAL_CAN_TxMailbox2AbortCallback; /* Legacy weak TxMailbox2AbortCallback */
hcan->SleepCallback = HAL_CAN_SleepCallback; /* Legacy weak SleepCallback */
hcan->WakeUpFromRxMsgCallback = HAL_CAN_WakeUpFromRxMsgCallback; /* Legacy weak WakeUpFromRxMsgCallback */
hcan->ErrorCallback = HAL_CAN_ErrorCallback; /* Legacy weak ErrorCallback */
if (hcan->MspInitCallback == NULL)
{
hcan->MspInitCallback = HAL_CAN_MspInit; /* Legacy weak MspInit */
}
/* Init the low level hardware: CLOCK, NVIC */
hcan->MspInitCallback(hcan);
}
#else
if (hcan->State == HAL_CAN_STATE_RESET)
{
/* Init the low level hardware: CLOCK, NVIC */
HAL_CAN_MspInit(hcan);
}
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
/* Request initialisation */
SET_BIT(hcan->Instance->MCR, CAN_MCR_INRQ);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait initialisation acknowledge */
while ((hcan->Instance->MSR & CAN_MSR_INAK) == 0U)
{
if ((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE)
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_TIMEOUT;
/* Change CAN state */
hcan->State = HAL_CAN_STATE_ERROR;
return HAL_ERROR;
}
}
/* Exit from sleep mode */
CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_SLEEP);
/* Get tick */
tickstart = HAL_GetTick();
/* Check Sleep mode leave acknowledge */
while ((hcan->Instance->MSR & CAN_MSR_SLAK) != 0U)
{
if ((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE)
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_TIMEOUT;
/* Change CAN state */
hcan->State = HAL_CAN_STATE_ERROR;
return HAL_ERROR;
}
}
/* Set the time triggered communication mode */
if (hcan->Init.TimeTriggeredMode == ENABLE)
{
SET_BIT(hcan->Instance->MCR, CAN_MCR_TTCM);
}
else
{
CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_TTCM);
}
/* Set the automatic bus-off management */
if (hcan->Init.AutoBusOff == ENABLE)
{
SET_BIT(hcan->Instance->MCR, CAN_MCR_ABOM);
}
else
{
CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_ABOM);
}
/* Set the automatic wake-up mode */
if (hcan->Init.AutoWakeUp == ENABLE)
{
SET_BIT(hcan->Instance->MCR, CAN_MCR_AWUM);
}
else
{
CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_AWUM);
}
/* Set the automatic retransmission */
if (hcan->Init.AutoRetransmission == ENABLE)
{
CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_NART);
}
else
{
SET_BIT(hcan->Instance->MCR, CAN_MCR_NART);
}
/* Set the receive FIFO locked mode */
if (hcan->Init.ReceiveFifoLocked == ENABLE)
{
SET_BIT(hcan->Instance->MCR, CAN_MCR_RFLM);
}
else
{
CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_RFLM);
}
/* Set the transmit FIFO priority */
if (hcan->Init.TransmitFifoPriority == ENABLE)
{
SET_BIT(hcan->Instance->MCR, CAN_MCR_TXFP);
}
else
{
CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_TXFP);
}
/* Set the bit timing register */
WRITE_REG(hcan->Instance->BTR, (uint32_t)(hcan->Init.Mode |
hcan->Init.SyncJumpWidth |
hcan->Init.TimeSeg1 |
hcan->Init.TimeSeg2 |
(hcan->Init.Prescaler - 1U)));
/* Initialize the error code */
hcan->ErrorCode = HAL_CAN_ERROR_NONE;
/* Initialize the CAN state */
hcan->State = HAL_CAN_STATE_READY;
/* Return function status */
return HAL_OK;
}
/**
* @brief Deinitializes the CAN peripheral registers to their default
* reset values.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_DeInit(CAN_HandleTypeDef *hcan)
{
/* Check CAN handle */
if (hcan == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_CAN_ALL_INSTANCE(hcan->Instance));
/* Stop the CAN module */
(void)HAL_CAN_Stop(hcan);
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
if (hcan->MspDeInitCallback == NULL)
{
hcan->MspDeInitCallback = HAL_CAN_MspDeInit; /* Legacy weak MspDeInit */
}
/* DeInit the low level hardware: CLOCK, NVIC */
hcan->MspDeInitCallback(hcan);
#else
/* DeInit the low level hardware: CLOCK, NVIC */
HAL_CAN_MspDeInit(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
/* Reset the CAN peripheral */
SET_BIT(hcan->Instance->MCR, CAN_MCR_RESET);
/* Reset the CAN ErrorCode */
hcan->ErrorCode = HAL_CAN_ERROR_NONE;
/* Change CAN state */
hcan->State = HAL_CAN_STATE_RESET;
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CAN MSP.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_MspInit(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes the CAN MSP.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_MspDeInit(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_MspDeInit could be implemented in the user file
*/
}
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/**
* @brief Register a CAN CallBack.
* To be used instead of the weak predefined callback
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for CAN module
* @param CallbackID ID of the callback to be registered
* This parameter can be one of the following values:
* @arg @ref HAL_CAN_TX_MAILBOX0_COMPLETE_CB_ID Tx Mailbox 0 Complete callback ID
* @arg @ref HAL_CAN_TX_MAILBOX1_COMPLETE_CB_ID Tx Mailbox 1 Complete callback ID
* @arg @ref HAL_CAN_TX_MAILBOX2_COMPLETE_CB_ID Tx Mailbox 2 Complete callback ID
* @arg @ref HAL_CAN_TX_MAILBOX0_ABORT_CB_ID Tx Mailbox 0 Abort callback ID
* @arg @ref HAL_CAN_TX_MAILBOX1_ABORT_CB_ID Tx Mailbox 1 Abort callback ID
* @arg @ref HAL_CAN_TX_MAILBOX2_ABORT_CB_ID Tx Mailbox 2 Abort callback ID
* @arg @ref HAL_CAN_RX_FIFO0_MSG_PENDING_CB_ID Rx Fifo 0 message pending callback ID
* @arg @ref HAL_CAN_RX_FIFO0_FULL_CB_ID Rx Fifo 0 full callback ID
* @arg @ref HAL_CAN_RX_FIFO1_MSG_PENDING_CB_ID Rx Fifo 1 message pending callback ID
* @arg @ref HAL_CAN_RX_FIFO1_FULL_CB_ID Rx Fifo 1 full callback ID
* @arg @ref HAL_CAN_SLEEP_CB_ID Sleep callback ID
* @arg @ref HAL_CAN_WAKEUP_FROM_RX_MSG_CB_ID Wake Up from Rx message callback ID
* @arg @ref HAL_CAN_ERROR_CB_ID Error callback ID
* @arg @ref HAL_CAN_MSPINIT_CB_ID MspInit callback ID
* @arg @ref HAL_CAN_MSPDEINIT_CB_ID MspDeInit callback ID
* @param pCallback pointer to the Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_RegisterCallback(CAN_HandleTypeDef *hcan, HAL_CAN_CallbackIDTypeDef CallbackID,
void (* pCallback)(CAN_HandleTypeDef *_hcan))
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hcan->ErrorCode |= HAL_CAN_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
if (hcan->State == HAL_CAN_STATE_READY)
{
switch (CallbackID)
{
case HAL_CAN_TX_MAILBOX0_COMPLETE_CB_ID :
hcan->TxMailbox0CompleteCallback = pCallback;
break;
case HAL_CAN_TX_MAILBOX1_COMPLETE_CB_ID :
hcan->TxMailbox1CompleteCallback = pCallback;
break;
case HAL_CAN_TX_MAILBOX2_COMPLETE_CB_ID :
hcan->TxMailbox2CompleteCallback = pCallback;
break;
case HAL_CAN_TX_MAILBOX0_ABORT_CB_ID :
hcan->TxMailbox0AbortCallback = pCallback;
break;
case HAL_CAN_TX_MAILBOX1_ABORT_CB_ID :
hcan->TxMailbox1AbortCallback = pCallback;
break;
case HAL_CAN_TX_MAILBOX2_ABORT_CB_ID :
hcan->TxMailbox2AbortCallback = pCallback;
break;
case HAL_CAN_RX_FIFO0_MSG_PENDING_CB_ID :
hcan->RxFifo0MsgPendingCallback = pCallback;
break;
case HAL_CAN_RX_FIFO0_FULL_CB_ID :
hcan->RxFifo0FullCallback = pCallback;
break;
case HAL_CAN_RX_FIFO1_MSG_PENDING_CB_ID :
hcan->RxFifo1MsgPendingCallback = pCallback;
break;
case HAL_CAN_RX_FIFO1_FULL_CB_ID :
hcan->RxFifo1FullCallback = pCallback;
break;
case HAL_CAN_SLEEP_CB_ID :
hcan->SleepCallback = pCallback;
break;
case HAL_CAN_WAKEUP_FROM_RX_MSG_CB_ID :
hcan->WakeUpFromRxMsgCallback = pCallback;
break;
case HAL_CAN_ERROR_CB_ID :
hcan->ErrorCallback = pCallback;
break;
case HAL_CAN_MSPINIT_CB_ID :
hcan->MspInitCallback = pCallback;
break;
case HAL_CAN_MSPDEINIT_CB_ID :
hcan->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hcan->ErrorCode |= HAL_CAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (hcan->State == HAL_CAN_STATE_RESET)
{
switch (CallbackID)
{
case HAL_CAN_MSPINIT_CB_ID :
hcan->MspInitCallback = pCallback;
break;
case HAL_CAN_MSPDEINIT_CB_ID :
hcan->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
hcan->ErrorCode |= HAL_CAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hcan->ErrorCode |= HAL_CAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Unregister a CAN CallBack.
* CAN callback is redirected to the weak predefined callback
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for CAN module
* @param CallbackID ID of the callback to be unregistered
* This parameter can be one of the following values:
* @arg @ref HAL_CAN_TX_MAILBOX0_COMPLETE_CB_ID Tx Mailbox 0 Complete callback ID
* @arg @ref HAL_CAN_TX_MAILBOX1_COMPLETE_CB_ID Tx Mailbox 1 Complete callback ID
* @arg @ref HAL_CAN_TX_MAILBOX2_COMPLETE_CB_ID Tx Mailbox 2 Complete callback ID
* @arg @ref HAL_CAN_TX_MAILBOX0_ABORT_CB_ID Tx Mailbox 0 Abort callback ID
* @arg @ref HAL_CAN_TX_MAILBOX1_ABORT_CB_ID Tx Mailbox 1 Abort callback ID
* @arg @ref HAL_CAN_TX_MAILBOX2_ABORT_CB_ID Tx Mailbox 2 Abort callback ID
* @arg @ref HAL_CAN_RX_FIFO0_MSG_PENDING_CB_ID Rx Fifo 0 message pending callback ID
* @arg @ref HAL_CAN_RX_FIFO0_FULL_CB_ID Rx Fifo 0 full callback ID
* @arg @ref HAL_CAN_RX_FIFO1_MSG_PENDING_CB_ID Rx Fifo 1 message pending callback ID
* @arg @ref HAL_CAN_RX_FIFO1_FULL_CB_ID Rx Fifo 1 full callback ID
* @arg @ref HAL_CAN_SLEEP_CB_ID Sleep callback ID
* @arg @ref HAL_CAN_WAKEUP_FROM_RX_MSG_CB_ID Wake Up from Rx message callback ID
* @arg @ref HAL_CAN_ERROR_CB_ID Error callback ID
* @arg @ref HAL_CAN_MSPINIT_CB_ID MspInit callback ID
* @arg @ref HAL_CAN_MSPDEINIT_CB_ID MspDeInit callback ID
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_UnRegisterCallback(CAN_HandleTypeDef *hcan, HAL_CAN_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;
if (hcan->State == HAL_CAN_STATE_READY)
{
switch (CallbackID)
{
case HAL_CAN_TX_MAILBOX0_COMPLETE_CB_ID :
hcan->TxMailbox0CompleteCallback = HAL_CAN_TxMailbox0CompleteCallback;
break;
case HAL_CAN_TX_MAILBOX1_COMPLETE_CB_ID :
hcan->TxMailbox1CompleteCallback = HAL_CAN_TxMailbox1CompleteCallback;
break;
case HAL_CAN_TX_MAILBOX2_COMPLETE_CB_ID :
hcan->TxMailbox2CompleteCallback = HAL_CAN_TxMailbox2CompleteCallback;
break;
case HAL_CAN_TX_MAILBOX0_ABORT_CB_ID :
hcan->TxMailbox0AbortCallback = HAL_CAN_TxMailbox0AbortCallback;
break;
case HAL_CAN_TX_MAILBOX1_ABORT_CB_ID :
hcan->TxMailbox1AbortCallback = HAL_CAN_TxMailbox1AbortCallback;
break;
case HAL_CAN_TX_MAILBOX2_ABORT_CB_ID :
hcan->TxMailbox2AbortCallback = HAL_CAN_TxMailbox2AbortCallback;
break;
case HAL_CAN_RX_FIFO0_MSG_PENDING_CB_ID :
hcan->RxFifo0MsgPendingCallback = HAL_CAN_RxFifo0MsgPendingCallback;
break;
case HAL_CAN_RX_FIFO0_FULL_CB_ID :
hcan->RxFifo0FullCallback = HAL_CAN_RxFifo0FullCallback;
break;
case HAL_CAN_RX_FIFO1_MSG_PENDING_CB_ID :
hcan->RxFifo1MsgPendingCallback = HAL_CAN_RxFifo1MsgPendingCallback;
break;
case HAL_CAN_RX_FIFO1_FULL_CB_ID :
hcan->RxFifo1FullCallback = HAL_CAN_RxFifo1FullCallback;
break;
case HAL_CAN_SLEEP_CB_ID :
hcan->SleepCallback = HAL_CAN_SleepCallback;
break;
case HAL_CAN_WAKEUP_FROM_RX_MSG_CB_ID :
hcan->WakeUpFromRxMsgCallback = HAL_CAN_WakeUpFromRxMsgCallback;
break;
case HAL_CAN_ERROR_CB_ID :
hcan->ErrorCallback = HAL_CAN_ErrorCallback;
break;
case HAL_CAN_MSPINIT_CB_ID :
hcan->MspInitCallback = HAL_CAN_MspInit;
break;
case HAL_CAN_MSPDEINIT_CB_ID :
hcan->MspDeInitCallback = HAL_CAN_MspDeInit;
break;
default :
/* Update the error code */
hcan->ErrorCode |= HAL_CAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (hcan->State == HAL_CAN_STATE_RESET)
{
switch (CallbackID)
{
case HAL_CAN_MSPINIT_CB_ID :
hcan->MspInitCallback = HAL_CAN_MspInit;
break;
case HAL_CAN_MSPDEINIT_CB_ID :
hcan->MspDeInitCallback = HAL_CAN_MspDeInit;
break;
default :
/* Update the error code */
hcan->ErrorCode |= HAL_CAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
hcan->ErrorCode |= HAL_CAN_ERROR_INVALID_CALLBACK;
/* Return error status */
status = HAL_ERROR;
}
return status;
}
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup CAN_Exported_Functions_Group2 Configuration functions
* @brief Configuration functions.
*
@verbatim
==============================================================================
##### Configuration functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) HAL_CAN_ConfigFilter : Configure the CAN reception filters
@endverbatim
* @{
*/
/**
* @brief Configures the CAN reception filter according to the specified
* parameters in the CAN_FilterInitStruct.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param sFilterConfig pointer to a CAN_FilterTypeDef structure that
* contains the filter configuration information.
* @retval None
*/
HAL_StatusTypeDef HAL_CAN_ConfigFilter(CAN_HandleTypeDef *hcan, const CAN_FilterTypeDef *sFilterConfig)
{
uint32_t filternbrbitpos;
CAN_TypeDef *can_ip = hcan->Instance;
HAL_CAN_StateTypeDef state = hcan->State;
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Check the parameters */
assert_param(IS_CAN_FILTER_ID_HALFWORD(sFilterConfig->FilterIdHigh));
assert_param(IS_CAN_FILTER_ID_HALFWORD(sFilterConfig->FilterIdLow));
assert_param(IS_CAN_FILTER_ID_HALFWORD(sFilterConfig->FilterMaskIdHigh));
assert_param(IS_CAN_FILTER_ID_HALFWORD(sFilterConfig->FilterMaskIdLow));
assert_param(IS_CAN_FILTER_MODE(sFilterConfig->FilterMode));
assert_param(IS_CAN_FILTER_SCALE(sFilterConfig->FilterScale));
assert_param(IS_CAN_FILTER_FIFO(sFilterConfig->FilterFIFOAssignment));
assert_param(IS_CAN_FILTER_ACTIVATION(sFilterConfig->FilterActivation));
#if defined(CAN2)
/* CAN1 and CAN2 are dual instances with 28 common filters banks */
/* Select master instance to access the filter banks */
can_ip = CAN1;
/* Check the parameters */
assert_param(IS_CAN_FILTER_BANK_DUAL(sFilterConfig->FilterBank));
assert_param(IS_CAN_FILTER_BANK_DUAL(sFilterConfig->SlaveStartFilterBank));
#else
/* CAN1 is single instance with 14 dedicated filters banks */
/* Check the parameters */
assert_param(IS_CAN_FILTER_BANK_SINGLE(sFilterConfig->FilterBank));
#endif /* CAN3 */
/* Initialisation mode for the filter */
SET_BIT(can_ip->FMR, CAN_FMR_FINIT);
#if defined(CAN2)
/* Select the start filter number of CAN2 slave instance */
CLEAR_BIT(can_ip->FMR, CAN_FMR_CAN2SB);
SET_BIT(can_ip->FMR, sFilterConfig->SlaveStartFilterBank << CAN_FMR_CAN2SB_Pos);
#endif /* CAN3 */
/* Convert filter number into bit position */
filternbrbitpos = (uint32_t)1 << (sFilterConfig->FilterBank & 0x1FU);
/* Filter Deactivation */
CLEAR_BIT(can_ip->FA1R, filternbrbitpos);
/* Filter Scale */
if (sFilterConfig->FilterScale == CAN_FILTERSCALE_16BIT)
{
/* 16-bit scale for the filter */
CLEAR_BIT(can_ip->FS1R, filternbrbitpos);
/* First 16-bit identifier and First 16-bit mask */
/* Or First 16-bit identifier and Second 16-bit identifier */
can_ip->sFilterRegister[sFilterConfig->FilterBank].FR1 =
((0x0000FFFFU & (uint32_t)sFilterConfig->FilterMaskIdLow) << 16U) |
(0x0000FFFFU & (uint32_t)sFilterConfig->FilterIdLow);
/* Second 16-bit identifier and Second 16-bit mask */
/* Or Third 16-bit identifier and Fourth 16-bit identifier */
can_ip->sFilterRegister[sFilterConfig->FilterBank].FR2 =
((0x0000FFFFU & (uint32_t)sFilterConfig->FilterMaskIdHigh) << 16U) |
(0x0000FFFFU & (uint32_t)sFilterConfig->FilterIdHigh);
}
if (sFilterConfig->FilterScale == CAN_FILTERSCALE_32BIT)
{
/* 32-bit scale for the filter */
SET_BIT(can_ip->FS1R, filternbrbitpos);
/* 32-bit identifier or First 32-bit identifier */
can_ip->sFilterRegister[sFilterConfig->FilterBank].FR1 =
((0x0000FFFFU & (uint32_t)sFilterConfig->FilterIdHigh) << 16U) |
(0x0000FFFFU & (uint32_t)sFilterConfig->FilterIdLow);
/* 32-bit mask or Second 32-bit identifier */
can_ip->sFilterRegister[sFilterConfig->FilterBank].FR2 =
((0x0000FFFFU & (uint32_t)sFilterConfig->FilterMaskIdHigh) << 16U) |
(0x0000FFFFU & (uint32_t)sFilterConfig->FilterMaskIdLow);
}
/* Filter Mode */
if (sFilterConfig->FilterMode == CAN_FILTERMODE_IDMASK)
{
/* Id/Mask mode for the filter*/
CLEAR_BIT(can_ip->FM1R, filternbrbitpos);
}
else /* CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdList */
{
/* Identifier list mode for the filter*/
SET_BIT(can_ip->FM1R, filternbrbitpos);
}
/* Filter FIFO assignment */
if (sFilterConfig->FilterFIFOAssignment == CAN_FILTER_FIFO0)
{
/* FIFO 0 assignation for the filter */
CLEAR_BIT(can_ip->FFA1R, filternbrbitpos);
}
else
{
/* FIFO 1 assignation for the filter */
SET_BIT(can_ip->FFA1R, filternbrbitpos);
}
/* Filter activation */
if (sFilterConfig->FilterActivation == CAN_FILTER_ENABLE)
{
SET_BIT(can_ip->FA1R, filternbrbitpos);
}
/* Leave the initialisation mode for the filter */
CLEAR_BIT(can_ip->FMR, CAN_FMR_FINIT);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @}
*/
/** @defgroup CAN_Exported_Functions_Group3 Control functions
* @brief Control functions
*
@verbatim
==============================================================================
##### Control functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) HAL_CAN_Start : Start the CAN module
(+) HAL_CAN_Stop : Stop the CAN module
(+) HAL_CAN_RequestSleep : Request sleep mode entry.
(+) HAL_CAN_WakeUp : Wake up from sleep mode.
(+) HAL_CAN_IsSleepActive : Check is sleep mode is active.
(+) HAL_CAN_AddTxMessage : Add a message to the Tx mailboxes
and activate the corresponding
transmission request
(+) HAL_CAN_AbortTxRequest : Abort transmission request
(+) HAL_CAN_GetTxMailboxesFreeLevel : Return Tx mailboxes free level
(+) HAL_CAN_IsTxMessagePending : Check if a transmission request is
pending on the selected Tx mailbox
(+) HAL_CAN_GetRxMessage : Get a CAN frame from the Rx FIFO
(+) HAL_CAN_GetRxFifoFillLevel : Return Rx FIFO fill level
@endverbatim
* @{
*/
/**
* @brief Start the CAN module.
* @param hcan pointer to an CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_Start(CAN_HandleTypeDef *hcan)
{
uint32_t tickstart;
if (hcan->State == HAL_CAN_STATE_READY)
{
/* Change CAN peripheral state */
hcan->State = HAL_CAN_STATE_LISTENING;
/* Request leave initialisation */
CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_INRQ);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait the acknowledge */
while ((hcan->Instance->MSR & CAN_MSR_INAK) != 0U)
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE)
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_TIMEOUT;
/* Change CAN state */
hcan->State = HAL_CAN_STATE_ERROR;
return HAL_ERROR;
}
}
/* Reset the CAN ErrorCode */
hcan->ErrorCode = HAL_CAN_ERROR_NONE;
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_READY;
return HAL_ERROR;
}
}
/**
* @brief Stop the CAN module and enable access to configuration registers.
* @param hcan pointer to an CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_Stop(CAN_HandleTypeDef *hcan)
{
uint32_t tickstart;
if (hcan->State == HAL_CAN_STATE_LISTENING)
{
/* Request initialisation */
SET_BIT(hcan->Instance->MCR, CAN_MCR_INRQ);
/* Get tick */
tickstart = HAL_GetTick();
/* Wait the acknowledge */
while ((hcan->Instance->MSR & CAN_MSR_INAK) == 0U)
{
/* Check for the Timeout */
if ((HAL_GetTick() - tickstart) > CAN_TIMEOUT_VALUE)
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_TIMEOUT;
/* Change CAN state */
hcan->State = HAL_CAN_STATE_ERROR;
return HAL_ERROR;
}
}
/* Exit from sleep mode */
CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_SLEEP);
/* Change CAN peripheral state */
hcan->State = HAL_CAN_STATE_READY;
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_STARTED;
return HAL_ERROR;
}
}
/**
* @brief Request the sleep mode (low power) entry.
* When returning from this function, Sleep mode will be entered
* as soon as the current CAN activity (transmission or reception
* of a CAN frame) has been completed.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_CAN_RequestSleep(CAN_HandleTypeDef *hcan)
{
HAL_CAN_StateTypeDef state = hcan->State;
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Request Sleep mode */
SET_BIT(hcan->Instance->MCR, CAN_MCR_SLEEP);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
/* Return function status */
return HAL_ERROR;
}
}
/**
* @brief Wake up from sleep mode.
* When returning with HAL_OK status from this function, Sleep mode
* is exited.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_CAN_WakeUp(CAN_HandleTypeDef *hcan)
{
__IO uint32_t count = 0;
HAL_CAN_StateTypeDef state = hcan->State;
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Wake up request */
CLEAR_BIT(hcan->Instance->MCR, CAN_MCR_SLEEP);
/* Wait sleep mode is exited */
do
{
/* Increment counter */
count++;
/* Check if timeout is reached */
if (count > CAN_WAKEUP_TIMEOUT_COUNTER)
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_TIMEOUT;
return HAL_ERROR;
}
} while ((hcan->Instance->MSR & CAN_MSR_SLAK) != 0U);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Check is sleep mode is active.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval Status
* - 0 : Sleep mode is not active.
* - 1 : Sleep mode is active.
*/
uint32_t HAL_CAN_IsSleepActive(const CAN_HandleTypeDef *hcan)
{
uint32_t status = 0U;
HAL_CAN_StateTypeDef state = hcan->State;
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Check Sleep mode */
if ((hcan->Instance->MSR & CAN_MSR_SLAK) != 0U)
{
status = 1U;
}
}
/* Return function status */
return status;
}
/**
* @brief Add a message to the first free Tx mailbox and activate the
* corresponding transmission request.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param pHeader pointer to a CAN_TxHeaderTypeDef structure.
* @param aData array containing the payload of the Tx frame.
* @param pTxMailbox pointer to a variable where the function will return
* the TxMailbox used to store the Tx message.
* This parameter can be a value of @arg CAN_Tx_Mailboxes.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_AddTxMessage(CAN_HandleTypeDef *hcan, const CAN_TxHeaderTypeDef *pHeader,
const uint8_t aData[], uint32_t *pTxMailbox)
{
uint32_t transmitmailbox;
HAL_CAN_StateTypeDef state = hcan->State;
uint32_t tsr = READ_REG(hcan->Instance->TSR);
/* Check the parameters */
assert_param(IS_CAN_IDTYPE(pHeader->IDE));
assert_param(IS_CAN_RTR(pHeader->RTR));
assert_param(IS_CAN_DLC(pHeader->DLC));
if (pHeader->IDE == CAN_ID_STD)
{
assert_param(IS_CAN_STDID(pHeader->StdId));
}
else
{
assert_param(IS_CAN_EXTID(pHeader->ExtId));
}
assert_param(IS_FUNCTIONAL_STATE(pHeader->TransmitGlobalTime));
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Check that all the Tx mailboxes are not full */
if (((tsr & CAN_TSR_TME0) != 0U) ||
((tsr & CAN_TSR_TME1) != 0U) ||
((tsr & CAN_TSR_TME2) != 0U))
{
/* Select an empty transmit mailbox */
transmitmailbox = (tsr & CAN_TSR_CODE) >> CAN_TSR_CODE_Pos;
/* Store the Tx mailbox */
*pTxMailbox = (uint32_t)1 << transmitmailbox;
/* Set up the Id */
if (pHeader->IDE == CAN_ID_STD)
{
hcan->Instance->sTxMailBox[transmitmailbox].TIR = ((pHeader->StdId << CAN_TI0R_STID_Pos) |
pHeader->RTR);
}
else
{
hcan->Instance->sTxMailBox[transmitmailbox].TIR = ((pHeader->ExtId << CAN_TI0R_EXID_Pos) |
pHeader->IDE |
pHeader->RTR);
}
/* Set up the DLC */
hcan->Instance->sTxMailBox[transmitmailbox].TDTR = (pHeader->DLC);
/* Set up the Transmit Global Time mode */
if (pHeader->TransmitGlobalTime == ENABLE)
{
SET_BIT(hcan->Instance->sTxMailBox[transmitmailbox].TDTR, CAN_TDT0R_TGT);
}
/* Set up the data field */
WRITE_REG(hcan->Instance->sTxMailBox[transmitmailbox].TDHR,
((uint32_t)aData[7] << CAN_TDH0R_DATA7_Pos) |
((uint32_t)aData[6] << CAN_TDH0R_DATA6_Pos) |
((uint32_t)aData[5] << CAN_TDH0R_DATA5_Pos) |
((uint32_t)aData[4] << CAN_TDH0R_DATA4_Pos));
WRITE_REG(hcan->Instance->sTxMailBox[transmitmailbox].TDLR,
((uint32_t)aData[3] << CAN_TDL0R_DATA3_Pos) |
((uint32_t)aData[2] << CAN_TDL0R_DATA2_Pos) |
((uint32_t)aData[1] << CAN_TDL0R_DATA1_Pos) |
((uint32_t)aData[0] << CAN_TDL0R_DATA0_Pos));
/* Request transmission */
SET_BIT(hcan->Instance->sTxMailBox[transmitmailbox].TIR, CAN_TI0R_TXRQ);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_PARAM;
return HAL_ERROR;
}
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Abort transmission requests
* @param hcan pointer to an CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param TxMailboxes List of the Tx Mailboxes to abort.
* This parameter can be any combination of @arg CAN_Tx_Mailboxes.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_AbortTxRequest(CAN_HandleTypeDef *hcan, uint32_t TxMailboxes)
{
HAL_CAN_StateTypeDef state = hcan->State;
/* Check function parameters */
assert_param(IS_CAN_TX_MAILBOX_LIST(TxMailboxes));
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Check Tx Mailbox 0 */
if ((TxMailboxes & CAN_TX_MAILBOX0) != 0U)
{
/* Add cancellation request for Tx Mailbox 0 */
SET_BIT(hcan->Instance->TSR, CAN_TSR_ABRQ0);
}
/* Check Tx Mailbox 1 */
if ((TxMailboxes & CAN_TX_MAILBOX1) != 0U)
{
/* Add cancellation request for Tx Mailbox 1 */
SET_BIT(hcan->Instance->TSR, CAN_TSR_ABRQ1);
}
/* Check Tx Mailbox 2 */
if ((TxMailboxes & CAN_TX_MAILBOX2) != 0U)
{
/* Add cancellation request for Tx Mailbox 2 */
SET_BIT(hcan->Instance->TSR, CAN_TSR_ABRQ2);
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Return Tx Mailboxes free level: number of free Tx Mailboxes.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval Number of free Tx Mailboxes.
*/
uint32_t HAL_CAN_GetTxMailboxesFreeLevel(const CAN_HandleTypeDef *hcan)
{
uint32_t freelevel = 0U;
HAL_CAN_StateTypeDef state = hcan->State;
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Check Tx Mailbox 0 status */
if ((hcan->Instance->TSR & CAN_TSR_TME0) != 0U)
{
freelevel++;
}
/* Check Tx Mailbox 1 status */
if ((hcan->Instance->TSR & CAN_TSR_TME1) != 0U)
{
freelevel++;
}
/* Check Tx Mailbox 2 status */
if ((hcan->Instance->TSR & CAN_TSR_TME2) != 0U)
{
freelevel++;
}
}
/* Return Tx Mailboxes free level */
return freelevel;
}
/**
* @brief Check if a transmission request is pending on the selected Tx
* Mailboxes.
* @param hcan pointer to an CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param TxMailboxes List of Tx Mailboxes to check.
* This parameter can be any combination of @arg CAN_Tx_Mailboxes.
* @retval Status
* - 0 : No pending transmission request on any selected Tx Mailboxes.
* - 1 : Pending transmission request on at least one of the selected
* Tx Mailbox.
*/
uint32_t HAL_CAN_IsTxMessagePending(const CAN_HandleTypeDef *hcan, uint32_t TxMailboxes)
{
uint32_t status = 0U;
HAL_CAN_StateTypeDef state = hcan->State;
/* Check function parameters */
assert_param(IS_CAN_TX_MAILBOX_LIST(TxMailboxes));
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Check pending transmission request on the selected Tx Mailboxes */
if ((hcan->Instance->TSR & (TxMailboxes << CAN_TSR_TME0_Pos)) != (TxMailboxes << CAN_TSR_TME0_Pos))
{
status = 1U;
}
}
/* Return status */
return status;
}
/**
* @brief Return timestamp of Tx message sent, if time triggered communication
mode is enabled.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param TxMailbox Tx Mailbox where the timestamp of message sent will be
* read.
* This parameter can be one value of @arg CAN_Tx_Mailboxes.
* @retval Timestamp of message sent from Tx Mailbox.
*/
uint32_t HAL_CAN_GetTxTimestamp(const CAN_HandleTypeDef *hcan, uint32_t TxMailbox)
{
uint32_t timestamp = 0U;
uint32_t transmitmailbox;
HAL_CAN_StateTypeDef state = hcan->State;
/* Check function parameters */
assert_param(IS_CAN_TX_MAILBOX(TxMailbox));
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Select the Tx mailbox */
transmitmailbox = POSITION_VAL(TxMailbox);
/* Get timestamp */
timestamp = (hcan->Instance->sTxMailBox[transmitmailbox].TDTR & CAN_TDT0R_TIME) >> CAN_TDT0R_TIME_Pos;
}
/* Return the timestamp */
return timestamp;
}
/**
* @brief Get an CAN frame from the Rx FIFO zone into the message RAM.
* @param hcan pointer to an CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param RxFifo Fifo number of the received message to be read.
* This parameter can be a value of @arg CAN_receive_FIFO_number.
* @param pHeader pointer to a CAN_RxHeaderTypeDef structure where the header
* of the Rx frame will be stored.
* @param aData array where the payload of the Rx frame will be stored.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_GetRxMessage(CAN_HandleTypeDef *hcan, uint32_t RxFifo,
CAN_RxHeaderTypeDef *pHeader, uint8_t aData[])
{
HAL_CAN_StateTypeDef state = hcan->State;
assert_param(IS_CAN_RX_FIFO(RxFifo));
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Check the Rx FIFO */
if (RxFifo == CAN_RX_FIFO0) /* Rx element is assigned to Rx FIFO 0 */
{
/* Check that the Rx FIFO 0 is not empty */
if ((hcan->Instance->RF0R & CAN_RF0R_FMP0) == 0U)
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_PARAM;
return HAL_ERROR;
}
}
else /* Rx element is assigned to Rx FIFO 1 */
{
/* Check that the Rx FIFO 1 is not empty */
if ((hcan->Instance->RF1R & CAN_RF1R_FMP1) == 0U)
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_PARAM;
return HAL_ERROR;
}
}
/* Get the header */
pHeader->IDE = CAN_RI0R_IDE & hcan->Instance->sFIFOMailBox[RxFifo].RIR;
if (pHeader->IDE == CAN_ID_STD)
{
pHeader->StdId = (CAN_RI0R_STID & hcan->Instance->sFIFOMailBox[RxFifo].RIR) >> CAN_TI0R_STID_Pos;
}
else
{
pHeader->ExtId = ((CAN_RI0R_EXID | CAN_RI0R_STID) &
hcan->Instance->sFIFOMailBox[RxFifo].RIR) >> CAN_RI0R_EXID_Pos;
}
pHeader->RTR = (CAN_RI0R_RTR & hcan->Instance->sFIFOMailBox[RxFifo].RIR);
if (((CAN_RDT0R_DLC & hcan->Instance->sFIFOMailBox[RxFifo].RDTR) >> CAN_RDT0R_DLC_Pos) >= 8U)
{
/* Truncate DLC to 8 if received field is over range */
pHeader->DLC = 8U;
}
else
{
pHeader->DLC = (CAN_RDT0R_DLC & hcan->Instance->sFIFOMailBox[RxFifo].RDTR) >> CAN_RDT0R_DLC_Pos;
}
pHeader->FilterMatchIndex = (CAN_RDT0R_FMI & hcan->Instance->sFIFOMailBox[RxFifo].RDTR) >> CAN_RDT0R_FMI_Pos;
pHeader->Timestamp = (CAN_RDT0R_TIME & hcan->Instance->sFIFOMailBox[RxFifo].RDTR) >> CAN_RDT0R_TIME_Pos;
/* Get the data */
aData[0] = (uint8_t)((CAN_RDL0R_DATA0 & hcan->Instance->sFIFOMailBox[RxFifo].RDLR) >> CAN_RDL0R_DATA0_Pos);
aData[1] = (uint8_t)((CAN_RDL0R_DATA1 & hcan->Instance->sFIFOMailBox[RxFifo].RDLR) >> CAN_RDL0R_DATA1_Pos);
aData[2] = (uint8_t)((CAN_RDL0R_DATA2 & hcan->Instance->sFIFOMailBox[RxFifo].RDLR) >> CAN_RDL0R_DATA2_Pos);
aData[3] = (uint8_t)((CAN_RDL0R_DATA3 & hcan->Instance->sFIFOMailBox[RxFifo].RDLR) >> CAN_RDL0R_DATA3_Pos);
aData[4] = (uint8_t)((CAN_RDH0R_DATA4 & hcan->Instance->sFIFOMailBox[RxFifo].RDHR) >> CAN_RDH0R_DATA4_Pos);
aData[5] = (uint8_t)((CAN_RDH0R_DATA5 & hcan->Instance->sFIFOMailBox[RxFifo].RDHR) >> CAN_RDH0R_DATA5_Pos);
aData[6] = (uint8_t)((CAN_RDH0R_DATA6 & hcan->Instance->sFIFOMailBox[RxFifo].RDHR) >> CAN_RDH0R_DATA6_Pos);
aData[7] = (uint8_t)((CAN_RDH0R_DATA7 & hcan->Instance->sFIFOMailBox[RxFifo].RDHR) >> CAN_RDH0R_DATA7_Pos);
/* Release the FIFO */
if (RxFifo == CAN_RX_FIFO0) /* Rx element is assigned to Rx FIFO 0 */
{
/* Release RX FIFO 0 */
SET_BIT(hcan->Instance->RF0R, CAN_RF0R_RFOM0);
}
else /* Rx element is assigned to Rx FIFO 1 */
{
/* Release RX FIFO 1 */
SET_BIT(hcan->Instance->RF1R, CAN_RF1R_RFOM1);
}
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Return Rx FIFO fill level.
* @param hcan pointer to an CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param RxFifo Rx FIFO.
* This parameter can be a value of @arg CAN_receive_FIFO_number.
* @retval Number of messages available in Rx FIFO.
*/
uint32_t HAL_CAN_GetRxFifoFillLevel(const CAN_HandleTypeDef *hcan, uint32_t RxFifo)
{
uint32_t filllevel = 0U;
HAL_CAN_StateTypeDef state = hcan->State;
/* Check function parameters */
assert_param(IS_CAN_RX_FIFO(RxFifo));
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
if (RxFifo == CAN_RX_FIFO0)
{
filllevel = hcan->Instance->RF0R & CAN_RF0R_FMP0;
}
else /* RxFifo == CAN_RX_FIFO1 */
{
filllevel = hcan->Instance->RF1R & CAN_RF1R_FMP1;
}
}
/* Return Rx FIFO fill level */
return filllevel;
}
/**
* @}
*/
/** @defgroup CAN_Exported_Functions_Group4 Interrupts management
* @brief Interrupts management
*
@verbatim
==============================================================================
##### Interrupts management #####
==============================================================================
[..] This section provides functions allowing to:
(+) HAL_CAN_ActivateNotification : Enable interrupts
(+) HAL_CAN_DeactivateNotification : Disable interrupts
(+) HAL_CAN_IRQHandler : Handles CAN interrupt request
@endverbatim
* @{
*/
/**
* @brief Enable interrupts.
* @param hcan pointer to an CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param ActiveITs indicates which interrupts will be enabled.
* This parameter can be any combination of @arg CAN_Interrupts.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_ActivateNotification(CAN_HandleTypeDef *hcan, uint32_t ActiveITs)
{
HAL_CAN_StateTypeDef state = hcan->State;
/* Check function parameters */
assert_param(IS_CAN_IT(ActiveITs));
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Enable the selected interrupts */
__HAL_CAN_ENABLE_IT(hcan, ActiveITs);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Disable interrupts.
* @param hcan pointer to an CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @param InactiveITs indicates which interrupts will be disabled.
* This parameter can be any combination of @arg CAN_Interrupts.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_DeactivateNotification(CAN_HandleTypeDef *hcan, uint32_t InactiveITs)
{
HAL_CAN_StateTypeDef state = hcan->State;
/* Check function parameters */
assert_param(IS_CAN_IT(InactiveITs));
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Disable the selected interrupts */
__HAL_CAN_DISABLE_IT(hcan, InactiveITs);
/* Return function status */
return HAL_OK;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
return HAL_ERROR;
}
}
/**
* @brief Handles CAN interrupt request
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
void HAL_CAN_IRQHandler(CAN_HandleTypeDef *hcan)
{
uint32_t errorcode = HAL_CAN_ERROR_NONE;
uint32_t interrupts = READ_REG(hcan->Instance->IER);
uint32_t msrflags = READ_REG(hcan->Instance->MSR);
uint32_t tsrflags = READ_REG(hcan->Instance->TSR);
uint32_t rf0rflags = READ_REG(hcan->Instance->RF0R);
uint32_t rf1rflags = READ_REG(hcan->Instance->RF1R);
uint32_t esrflags = READ_REG(hcan->Instance->ESR);
/* Transmit Mailbox empty interrupt management *****************************/
if ((interrupts & CAN_IT_TX_MAILBOX_EMPTY) != 0U)
{
/* Transmit Mailbox 0 management *****************************************/
if ((tsrflags & CAN_TSR_RQCP0) != 0U)
{
/* Clear the Transmission Complete flag (and TXOK0,ALST0,TERR0 bits) */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_RQCP0);
if ((tsrflags & CAN_TSR_TXOK0) != 0U)
{
/* Transmission Mailbox 0 complete callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->TxMailbox0CompleteCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_TxMailbox0CompleteCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
else
{
if ((tsrflags & CAN_TSR_ALST0) != 0U)
{
/* Update error code */
errorcode |= HAL_CAN_ERROR_TX_ALST0;
}
else if ((tsrflags & CAN_TSR_TERR0) != 0U)
{
/* Update error code */
errorcode |= HAL_CAN_ERROR_TX_TERR0;
}
else
{
/* Transmission Mailbox 0 abort callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->TxMailbox0AbortCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_TxMailbox0AbortCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
}
}
/* Transmit Mailbox 1 management *****************************************/
if ((tsrflags & CAN_TSR_RQCP1) != 0U)
{
/* Clear the Transmission Complete flag (and TXOK1,ALST1,TERR1 bits) */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_RQCP1);
if ((tsrflags & CAN_TSR_TXOK1) != 0U)
{
/* Transmission Mailbox 1 complete callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->TxMailbox1CompleteCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_TxMailbox1CompleteCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
else
{
if ((tsrflags & CAN_TSR_ALST1) != 0U)
{
/* Update error code */
errorcode |= HAL_CAN_ERROR_TX_ALST1;
}
else if ((tsrflags & CAN_TSR_TERR1) != 0U)
{
/* Update error code */
errorcode |= HAL_CAN_ERROR_TX_TERR1;
}
else
{
/* Transmission Mailbox 1 abort callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->TxMailbox1AbortCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_TxMailbox1AbortCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
}
}
/* Transmit Mailbox 2 management *****************************************/
if ((tsrflags & CAN_TSR_RQCP2) != 0U)
{
/* Clear the Transmission Complete flag (and TXOK2,ALST2,TERR2 bits) */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_RQCP2);
if ((tsrflags & CAN_TSR_TXOK2) != 0U)
{
/* Transmission Mailbox 2 complete callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->TxMailbox2CompleteCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_TxMailbox2CompleteCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
else
{
if ((tsrflags & CAN_TSR_ALST2) != 0U)
{
/* Update error code */
errorcode |= HAL_CAN_ERROR_TX_ALST2;
}
else if ((tsrflags & CAN_TSR_TERR2) != 0U)
{
/* Update error code */
errorcode |= HAL_CAN_ERROR_TX_TERR2;
}
else
{
/* Transmission Mailbox 2 abort callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->TxMailbox2AbortCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_TxMailbox2AbortCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
}
}
}
/* Receive FIFO 0 overrun interrupt management *****************************/
if ((interrupts & CAN_IT_RX_FIFO0_OVERRUN) != 0U)
{
if ((rf0rflags & CAN_RF0R_FOVR0) != 0U)
{
/* Set CAN error code to Rx Fifo 0 overrun error */
errorcode |= HAL_CAN_ERROR_RX_FOV0;
/* Clear FIFO0 Overrun Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FOV0);
}
}
/* Receive FIFO 0 full interrupt management ********************************/
if ((interrupts & CAN_IT_RX_FIFO0_FULL) != 0U)
{
if ((rf0rflags & CAN_RF0R_FULL0) != 0U)
{
/* Clear FIFO 0 full Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FF0);
/* Receive FIFO 0 full Callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->RxFifo0FullCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_RxFifo0FullCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
}
/* Receive FIFO 0 message pending interrupt management *********************/
if ((interrupts & CAN_IT_RX_FIFO0_MSG_PENDING) != 0U)
{
/* Check if message is still pending */
if ((hcan->Instance->RF0R & CAN_RF0R_FMP0) != 0U)
{
/* Receive FIFO 0 message pending Callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->RxFifo0MsgPendingCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_RxFifo0MsgPendingCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
}
/* Receive FIFO 1 overrun interrupt management *****************************/
if ((interrupts & CAN_IT_RX_FIFO1_OVERRUN) != 0U)
{
if ((rf1rflags & CAN_RF1R_FOVR1) != 0U)
{
/* Set CAN error code to Rx Fifo 1 overrun error */
errorcode |= HAL_CAN_ERROR_RX_FOV1;
/* Clear FIFO1 Overrun Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FOV1);
}
}
/* Receive FIFO 1 full interrupt management ********************************/
if ((interrupts & CAN_IT_RX_FIFO1_FULL) != 0U)
{
if ((rf1rflags & CAN_RF1R_FULL1) != 0U)
{
/* Clear FIFO 1 full Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_FF1);
/* Receive FIFO 1 full Callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->RxFifo1FullCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_RxFifo1FullCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
}
/* Receive FIFO 1 message pending interrupt management *********************/
if ((interrupts & CAN_IT_RX_FIFO1_MSG_PENDING) != 0U)
{
/* Check if message is still pending */
if ((hcan->Instance->RF1R & CAN_RF1R_FMP1) != 0U)
{
/* Receive FIFO 1 message pending Callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->RxFifo1MsgPendingCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_RxFifo1MsgPendingCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
}
/* Sleep interrupt management *********************************************/
if ((interrupts & CAN_IT_SLEEP_ACK) != 0U)
{
if ((msrflags & CAN_MSR_SLAKI) != 0U)
{
/* Clear Sleep interrupt Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_SLAKI);
/* Sleep Callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->SleepCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_SleepCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
}
/* WakeUp interrupt management *********************************************/
if ((interrupts & CAN_IT_WAKEUP) != 0U)
{
if ((msrflags & CAN_MSR_WKUI) != 0U)
{
/* Clear WakeUp Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_WKU);
/* WakeUp Callback */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->WakeUpFromRxMsgCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_WakeUpFromRxMsgCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
}
/* Error interrupts management *********************************************/
if ((interrupts & CAN_IT_ERROR) != 0U)
{
if ((msrflags & CAN_MSR_ERRI) != 0U)
{
/* Check Error Warning Flag */
if (((interrupts & CAN_IT_ERROR_WARNING) != 0U) &&
((esrflags & CAN_ESR_EWGF) != 0U))
{
/* Set CAN error code to Error Warning */
errorcode |= HAL_CAN_ERROR_EWG;
/* No need for clear of Error Warning Flag as read-only */
}
/* Check Error Passive Flag */
if (((interrupts & CAN_IT_ERROR_PASSIVE) != 0U) &&
((esrflags & CAN_ESR_EPVF) != 0U))
{
/* Set CAN error code to Error Passive */
errorcode |= HAL_CAN_ERROR_EPV;
/* No need for clear of Error Passive Flag as read-only */
}
/* Check Bus-off Flag */
if (((interrupts & CAN_IT_BUSOFF) != 0U) &&
((esrflags & CAN_ESR_BOFF) != 0U))
{
/* Set CAN error code to Bus-Off */
errorcode |= HAL_CAN_ERROR_BOF;
/* No need for clear of Error Bus-Off as read-only */
}
/* Check Last Error Code Flag */
if (((interrupts & CAN_IT_LAST_ERROR_CODE) != 0U) &&
((esrflags & CAN_ESR_LEC) != 0U))
{
switch (esrflags & CAN_ESR_LEC)
{
case (CAN_ESR_LEC_0):
/* Set CAN error code to Stuff error */
errorcode |= HAL_CAN_ERROR_STF;
break;
case (CAN_ESR_LEC_1):
/* Set CAN error code to Form error */
errorcode |= HAL_CAN_ERROR_FOR;
break;
case (CAN_ESR_LEC_1 | CAN_ESR_LEC_0):
/* Set CAN error code to Acknowledgement error */
errorcode |= HAL_CAN_ERROR_ACK;
break;
case (CAN_ESR_LEC_2):
/* Set CAN error code to Bit recessive error */
errorcode |= HAL_CAN_ERROR_BR;
break;
case (CAN_ESR_LEC_2 | CAN_ESR_LEC_0):
/* Set CAN error code to Bit Dominant error */
errorcode |= HAL_CAN_ERROR_BD;
break;
case (CAN_ESR_LEC_2 | CAN_ESR_LEC_1):
/* Set CAN error code to CRC error */
errorcode |= HAL_CAN_ERROR_CRC;
break;
default:
break;
}
/* Clear Last error code Flag */
CLEAR_BIT(hcan->Instance->ESR, CAN_ESR_LEC);
}
}
/* Clear ERRI Flag */
__HAL_CAN_CLEAR_FLAG(hcan, CAN_FLAG_ERRI);
}
/* Call the Error call Back in case of Errors */
if (errorcode != HAL_CAN_ERROR_NONE)
{
/* Update error code in handle */
hcan->ErrorCode |= errorcode;
/* Call Error callback function */
#if USE_HAL_CAN_REGISTER_CALLBACKS == 1
/* Call registered callback*/
hcan->ErrorCallback(hcan);
#else
/* Call weak (surcharged) callback */
HAL_CAN_ErrorCallback(hcan);
#endif /* USE_HAL_CAN_REGISTER_CALLBACKS */
}
}
/**
* @}
*/
/** @defgroup CAN_Exported_Functions_Group5 Callback functions
* @brief CAN Callback functions
*
@verbatim
==============================================================================
##### Callback functions #####
==============================================================================
[..]
This subsection provides the following callback functions:
(+) HAL_CAN_TxMailbox0CompleteCallback
(+) HAL_CAN_TxMailbox1CompleteCallback
(+) HAL_CAN_TxMailbox2CompleteCallback
(+) HAL_CAN_TxMailbox0AbortCallback
(+) HAL_CAN_TxMailbox1AbortCallback
(+) HAL_CAN_TxMailbox2AbortCallback
(+) HAL_CAN_RxFifo0MsgPendingCallback
(+) HAL_CAN_RxFifo0FullCallback
(+) HAL_CAN_RxFifo1MsgPendingCallback
(+) HAL_CAN_RxFifo1FullCallback
(+) HAL_CAN_SleepCallback
(+) HAL_CAN_WakeUpFromRxMsgCallback
(+) HAL_CAN_ErrorCallback
@endverbatim
* @{
*/
/**
* @brief Transmission Mailbox 0 complete callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_TxMailbox0CompleteCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_TxMailbox0CompleteCallback could be implemented in the
user file
*/
}
/**
* @brief Transmission Mailbox 1 complete callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_TxMailbox1CompleteCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_TxMailbox1CompleteCallback could be implemented in the
user file
*/
}
/**
* @brief Transmission Mailbox 2 complete callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_TxMailbox2CompleteCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_TxMailbox2CompleteCallback could be implemented in the
user file
*/
}
/**
* @brief Transmission Mailbox 0 Cancellation callback.
* @param hcan pointer to an CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_TxMailbox0AbortCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_TxMailbox0AbortCallback could be implemented in the
user file
*/
}
/**
* @brief Transmission Mailbox 1 Cancellation callback.
* @param hcan pointer to an CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_TxMailbox1AbortCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_TxMailbox1AbortCallback could be implemented in the
user file
*/
}
/**
* @brief Transmission Mailbox 2 Cancellation callback.
* @param hcan pointer to an CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_TxMailbox2AbortCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_TxMailbox2AbortCallback could be implemented in the
user file
*/
}
/**
* @brief Rx FIFO 0 message pending callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_RxFifo0MsgPendingCallback could be implemented in the
user file
*/
}
/**
* @brief Rx FIFO 0 full callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_RxFifo0FullCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_RxFifo0FullCallback could be implemented in the user
file
*/
}
/**
* @brief Rx FIFO 1 message pending callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_RxFifo1MsgPendingCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_RxFifo1MsgPendingCallback could be implemented in the
user file
*/
}
/**
* @brief Rx FIFO 1 full callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_RxFifo1FullCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_RxFifo1FullCallback could be implemented in the user
file
*/
}
/**
* @brief Sleep callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_SleepCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_SleepCallback could be implemented in the user file
*/
}
/**
* @brief WakeUp from Rx message callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_WakeUpFromRxMsgCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_WakeUpFromRxMsgCallback could be implemented in the
user file
*/
}
/**
* @brief Error CAN callback.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval None
*/
__weak void HAL_CAN_ErrorCallback(CAN_HandleTypeDef *hcan)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcan);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_CAN_ErrorCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup CAN_Exported_Functions_Group6 Peripheral State and Error functions
* @brief CAN Peripheral State functions
*
@verbatim
==============================================================================
##### Peripheral State and Error functions #####
==============================================================================
[..]
This subsection provides functions allowing to :
(+) HAL_CAN_GetState() : Return the CAN state.
(+) HAL_CAN_GetError() : Return the CAN error codes if any.
(+) HAL_CAN_ResetError(): Reset the CAN error codes if any.
@endverbatim
* @{
*/
/**
* @brief Return the CAN state.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL state
*/
HAL_CAN_StateTypeDef HAL_CAN_GetState(const CAN_HandleTypeDef *hcan)
{
HAL_CAN_StateTypeDef state = hcan->State;
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Check sleep mode acknowledge flag */
if ((hcan->Instance->MSR & CAN_MSR_SLAK) != 0U)
{
/* Sleep mode is active */
state = HAL_CAN_STATE_SLEEP_ACTIVE;
}
/* Check sleep mode request flag */
else if ((hcan->Instance->MCR & CAN_MCR_SLEEP) != 0U)
{
/* Sleep mode request is pending */
state = HAL_CAN_STATE_SLEEP_PENDING;
}
else
{
/* Neither sleep mode request nor sleep mode acknowledge */
}
}
/* Return CAN state */
return state;
}
/**
* @brief Return the CAN error code.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval CAN Error Code
*/
uint32_t HAL_CAN_GetError(const CAN_HandleTypeDef *hcan)
{
/* Return CAN error code */
return hcan->ErrorCode;
}
/**
* @brief Reset the CAN error code.
* @param hcan pointer to a CAN_HandleTypeDef structure that contains
* the configuration information for the specified CAN.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CAN_ResetError(CAN_HandleTypeDef *hcan)
{
HAL_StatusTypeDef status = HAL_OK;
HAL_CAN_StateTypeDef state = hcan->State;
if ((state == HAL_CAN_STATE_READY) ||
(state == HAL_CAN_STATE_LISTENING))
{
/* Reset CAN error code */
hcan->ErrorCode = 0U;
}
else
{
/* Update error code */
hcan->ErrorCode |= HAL_CAN_ERROR_NOT_INITIALIZED;
status = HAL_ERROR;
}
/* Return the status */
return status;
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_CAN_MODULE_ENABLED */
/**
* @}
*/
#endif /* CAN1 */
/**
* @}
*/

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,1948 @@
/**
******************************************************************************
* @file stm32f1xx_hal_rtc.c
* @author MCD Application Team
* @brief RTC HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Real Time Clock (RTC) peripheral:
* + Initialization and de-initialization functions
* + RTC Time and Date functions
* + RTC Alarm functions
* + Peripheral Control functions
* + Peripheral State functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
(+) Enable the RTC domain access (see description in the section above).
(+) Configure the RTC Prescaler (Asynchronous prescaler to generate RTC 1Hz time base)
using the HAL_RTC_Init() function.
*** Time and Date configuration ***
===================================
[..]
(+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime()
and HAL_RTC_SetDate() functions.
(+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions.
*** Alarm configuration ***
===========================
[..]
(+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function.
You can also configure the RTC Alarm with interrupt mode using the HAL_RTC_SetAlarm_IT() function.
(+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function.
*** Tamper configuration ***
============================
[..]
(+) Enable the RTC Tamper and configure the Tamper Level using the
HAL_RTCEx_SetTamper() function. You can configure RTC Tamper with interrupt
mode using HAL_RTCEx_SetTamper_IT() function.
(+) The TAMPER1 alternate function can be mapped to PC13
*** Backup Data Registers configuration ***
===========================================
[..]
(+) To write to the RTC Backup Data registers, use the HAL_RTCEx_BKUPWrite()
function.
(+) To read the RTC Backup Data registers, use the HAL_RTCEx_BKUPRead()
function.
##### WARNING: Drivers Restrictions #####
==================================================================
[..] RTC version used on STM32F1 families is version V1. All the features supported by V2
(other families) will be not supported on F1.
[..] As on V2, main RTC features are managed by HW. But on F1, date feature is completely
managed by SW.
[..] Then, there are some restrictions compared to other families:
(+) Only format 24 hours supported in HAL (format 12 hours not supported)
(+) Date is saved in SRAM. Then, when MCU is in STOP or STANDBY mode, date will be lost.
User should implement a way to save date before entering in low power mode (an
example is provided with firmware package based on backup registers)
(+) Date is automatically updated each time a HAL_RTC_GetTime or HAL_RTC_GetDate is called.
(+) Alarm detection is limited to 1 day. It will expire only 1 time (no alarm repetition, need
to program a new alarm)
##### Backup Domain Operating Condition #####
==============================================================================
[..] The real-time clock (RTC) and the RTC backup registers can be powered
from the VBAT voltage when the main VDD supply is powered off.
To retain the content of the RTC backup registers and supply the RTC
when VDD is turned off, VBAT pin can be connected to an optional
standby voltage supplied by a battery or by another source.
[..] To allow the RTC operating even when the main digital supply (VDD) is turned
off, the VBAT pin powers the following blocks:
(#) The RTC
(#) The LSE oscillator
(#) The backup SRAM when the low power backup regulator is enabled
(#) PC13 to PC15 I/Os, plus PI8 I/O (when available)
[..] When the backup domain is supplied by VDD (analog switch connected to VDD),
the following pins are available:
(+) PC13 can be used as a Tamper pin
[..] When the backup domain is supplied by VBAT (analog switch connected to VBAT
because VDD is not present), the following pins are available:
(+) PC13 can be used as the Tamper pin
##### Backup Domain Reset #####
==================================================================
[..] The backup domain reset sets all RTC registers and the RCC_BDCR register
to their reset values.
[..] A backup domain reset is generated when one of the following events occurs:
(#) Software reset, triggered by setting the BDRST bit in the
RCC Backup domain control register (RCC_BDCR).
(#) VDD or VBAT power on, if both supplies have previously been powered off.
(#) Tamper detection event resets all data backup registers.
##### Backup Domain Access #####
==================================================================
[..] After reset, the backup domain (RTC registers, RTC backup data
registers and backup SRAM) is protected against possible unwanted write
accesses.
[..] To enable access to the RTC Domain and RTC registers, proceed as follows:
(+) Call the function HAL_RCCEx_PeriphCLKConfig in using RCC_PERIPHCLK_RTC for
PeriphClockSelection and select RTCClockSelection (LSE, LSI or HSE)
(+) Enable the BKP clock in using __HAL_RCC_BKP_CLK_ENABLE()
##### RTC and low power modes #####
==================================================================
[..] The MCU can be woken up from a low power mode by an RTC alternate
function.
[..] The RTC alternate functions are the RTC alarms (Alarm A),
and RTC tamper event detection.
These RTC alternate functions can wake up the system from the Stop and
Standby low power modes.
[..] The system can also wake up from low power modes without depending
on an external interrupt (Auto-wakeup mode), by using the RTC alarm.
*** Callback registration ***
=============================================
[..]
The compilation define USE_HAL_RTC_REGISTER_CALLBACKS when set to 1
allows the user to configure dynamically the driver callbacks.
Use Function HAL_RTC_RegisterCallback() to register an interrupt callback.
[..]
Function HAL_RTC_RegisterCallback() allows to register following callbacks:
(+) AlarmAEventCallback : RTC Alarm A Event callback.
(+) Tamper1EventCallback : RTC Tamper 1 Event callback.
(+) MspInitCallback : RTC MspInit callback.
(+) MspDeInitCallback : RTC MspDeInit callback.
[..]
This function takes as parameters the HAL peripheral handle, the Callback ID
and a pointer to the user callback function.
[..]
Use function HAL_RTC_UnRegisterCallback() to reset a callback to the default
weak function.
HAL_RTC_UnRegisterCallback() takes as parameters the HAL peripheral handle,
and the Callback ID.
This function allows to reset following callbacks:
(+) AlarmAEventCallback : RTC Alarm A Event callback.
(+) Tamper1EventCallback : RTC Tamper 1 Event callback.
(+) MspInitCallback : RTC MspInit callback.
(+) MspDeInitCallback : RTC MspDeInit callback.
[..]
By default, after the HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET,
all callbacks are set to the corresponding weak functions :
example AlarmAEventCallback().
Exception done for MspInit and MspDeInit callbacks that are reset to the legacy weak function
in the HAL_RTC_Init()/HAL_RTC_DeInit() only when these callbacks are null
(not registered beforehand).
If not, MspInit or MspDeInit are not null, HAL_RTC_Init()/HAL_RTC_DeInit()
keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
[..]
Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only.
Exception done MspInit/MspDeInit that can be registered/unregistered
in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state,
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
In that case first register the MspInit/MspDeInit user callbacks
using HAL_RTC_RegisterCallback() before calling HAL_RTC_DeInit()
or HAL_RTC_Init() function.
[..]
When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registration feature is not available and all callbacks
are set to the corresponding weak functions.
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @defgroup RTC RTC
* @brief RTC HAL module driver
* @{
*/
#ifdef HAL_RTC_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup RTC_Private_Constants RTC Private Constants
* @{
*/
#define RTC_ALARM_RESETVALUE_REGISTER (uint16_t)0xFFFF
#define RTC_ALARM_RESETVALUE 0xFFFFFFFFU
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/** @defgroup RTC_Private_Macros RTC Private Macros
* @{
*/
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup RTC_Private_Functions RTC Private Functions
* @{
*/
static uint32_t RTC_ReadTimeCounter(RTC_HandleTypeDef *hrtc);
static HAL_StatusTypeDef RTC_WriteTimeCounter(RTC_HandleTypeDef *hrtc, uint32_t TimeCounter);
static uint32_t RTC_ReadAlarmCounter(RTC_HandleTypeDef *hrtc);
static HAL_StatusTypeDef RTC_WriteAlarmCounter(RTC_HandleTypeDef *hrtc, uint32_t AlarmCounter);
static HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef *hrtc);
static HAL_StatusTypeDef RTC_ExitInitMode(RTC_HandleTypeDef *hrtc);
static uint8_t RTC_ByteToBcd2(uint8_t Value);
static uint8_t RTC_Bcd2ToByte(uint8_t Value);
static uint8_t RTC_IsLeapYear(uint16_t nYear);
static void RTC_DateUpdate(RTC_HandleTypeDef *hrtc, uint32_t DayElapsed);
static uint8_t RTC_WeekDayNum(uint32_t nYear, uint8_t nMonth, uint8_t nDay);
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup RTC_Exported_Functions RTC Exported Functions
* @{
*/
/** @defgroup RTC_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..] This section provides functions allowing to initialize and configure the
RTC Prescaler (Asynchronous), disable RTC registers Write protection,
enter and exit the RTC initialization mode,
RTC registers synchronization check and reference clock detection enable.
(#) The RTC Prescaler should be programmed to generate the RTC 1Hz time base.
(#) All RTC registers are Write protected. Writing to the RTC registers
is enabled by setting the CNF bit in the RTC_CRL register.
(#) To read the calendar after wakeup from low power modes (Standby or Stop)
the software must first wait for the RSF bit (Register Synchronized Flag)
in the RTC_CRL register to be set by hardware.
The HAL_RTC_WaitForSynchro() function implements the above software
sequence (RSF clear and RSF check).
@endverbatim
* @{
*/
/**
* @brief Initializes the RTC peripheral
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc)
{
uint32_t prescaler = 0U;
/* Check input parameters */
if (hrtc == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
assert_param(IS_RTC_CALIB_OUTPUT(hrtc->Init.OutPut));
assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv));
#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
if (hrtc->State == HAL_RTC_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hrtc->Lock = HAL_UNLOCKED;
hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback; /* Legacy weak AlarmAEventCallback */
hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback; /* Legacy weak Tamper1EventCallback */
if (hrtc->MspInitCallback == NULL)
{
hrtc->MspInitCallback = HAL_RTC_MspInit;
}
/* Init the low level hardware */
hrtc->MspInitCallback(hrtc);
if (hrtc->MspDeInitCallback == NULL)
{
hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
}
}
#else
if (hrtc->State == HAL_RTC_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hrtc->Lock = HAL_UNLOCKED;
/* Initialize RTC MSP */
HAL_RTC_MspInit(hrtc);
}
#endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */
/* Set RTC state */
hrtc->State = HAL_RTC_STATE_BUSY;
/* Waiting for synchro */
if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
{
/* Set RTC state */
hrtc->State = HAL_RTC_STATE_ERROR;
return HAL_ERROR;
}
/* Set Initialization mode */
if (RTC_EnterInitMode(hrtc) != HAL_OK)
{
/* Set RTC state */
hrtc->State = HAL_RTC_STATE_ERROR;
return HAL_ERROR;
}
else
{
/* Clear Flags Bits */
CLEAR_BIT(hrtc->Instance->CRL, (RTC_FLAG_OW | RTC_FLAG_ALRAF | RTC_FLAG_SEC));
if (hrtc->Init.OutPut != RTC_OUTPUTSOURCE_NONE)
{
/* Disable the selected Tamper pin */
CLEAR_BIT(BKP->CR, BKP_CR_TPE);
}
/* Set the signal which will be routed to RTC Tamper pin*/
MODIFY_REG(BKP->RTCCR, (BKP_RTCCR_CCO | BKP_RTCCR_ASOE | BKP_RTCCR_ASOS), hrtc->Init.OutPut);
if (hrtc->Init.AsynchPrediv != RTC_AUTO_1_SECOND)
{
/* RTC Prescaler provided directly by end-user*/
prescaler = hrtc->Init.AsynchPrediv;
}
else
{
/* RTC Prescaler will be automatically calculated to get 1 second timebase */
/* Get the RTCCLK frequency */
prescaler = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_RTC);
/* Check that RTC clock is enabled*/
if (prescaler == 0U)
{
/* Should not happen. Frequency is not available*/
hrtc->State = HAL_RTC_STATE_ERROR;
return HAL_ERROR;
}
else
{
/* RTC period = RTCCLK/(RTC_PR + 1) */
prescaler = prescaler - 1U;
}
}
/* Configure the RTC_PRLH / RTC_PRLL */
WRITE_REG(hrtc->Instance->PRLH, ((prescaler >> 16U) & RTC_PRLH_PRL));
WRITE_REG(hrtc->Instance->PRLL, (prescaler & RTC_PRLL_PRL));
/* Wait for synchro */
if (RTC_ExitInitMode(hrtc) != HAL_OK)
{
hrtc->State = HAL_RTC_STATE_ERROR;
return HAL_ERROR;
}
/* Initialize date to 1st of January 2000 */
hrtc->DateToUpdate.Year = 0x00U;
hrtc->DateToUpdate.Month = RTC_MONTH_JANUARY;
hrtc->DateToUpdate.Date = 0x01U;
/* Set RTC state */
hrtc->State = HAL_RTC_STATE_READY;
return HAL_OK;
}
}
/**
* @brief DeInitializes the RTC peripheral
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @note This function does not reset the RTC Backup Data registers.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
{
/* Check input parameters */
if (hrtc == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
/* Set RTC state */
hrtc->State = HAL_RTC_STATE_BUSY;
/* Set Initialization mode */
if (RTC_EnterInitMode(hrtc) != HAL_OK)
{
/* Set RTC state */
hrtc->State = HAL_RTC_STATE_ERROR;
/* Release Lock */
__HAL_UNLOCK(hrtc);
return HAL_ERROR;
}
else
{
CLEAR_REG(hrtc->Instance->CNTL);
CLEAR_REG(hrtc->Instance->CNTH);
WRITE_REG(hrtc->Instance->PRLL, 0x00008000U);
CLEAR_REG(hrtc->Instance->PRLH);
/* Reset All CRH/CRL bits */
CLEAR_REG(hrtc->Instance->CRH);
CLEAR_REG(hrtc->Instance->CRL);
if (RTC_ExitInitMode(hrtc) != HAL_OK)
{
hrtc->State = HAL_RTC_STATE_ERROR;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_ERROR;
}
}
/* Wait for synchro*/
HAL_RTC_WaitForSynchro(hrtc);
/* Clear RSF flag */
CLEAR_BIT(hrtc->Instance->CRL, RTC_FLAG_RSF);
#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
if (hrtc->MspDeInitCallback == NULL)
{
hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
}
/* DeInit the low level hardware: CLOCK, NVIC.*/
hrtc->MspDeInitCallback(hrtc);
#else
/* De-Initialize RTC MSP */
HAL_RTC_MspDeInit(hrtc);
#endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */
hrtc->State = HAL_RTC_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
/**
* @brief Register a User RTC Callback
* To be used instead of the weak predefined callback
* @param hrtc RTC handle
* @param CallbackID ID of the callback to be registered
* This parameter can be one of the following values:
* @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID
* @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID
* @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
* @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
* @param pCallback pointer to the Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID, pRTC_CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hrtc);
if (HAL_RTC_STATE_READY == hrtc->State)
{
switch (CallbackID)
{
case HAL_RTC_ALARM_A_EVENT_CB_ID :
hrtc->AlarmAEventCallback = pCallback;
break;
case HAL_RTC_TAMPER1_EVENT_CB_ID :
hrtc->Tamper1EventCallback = pCallback;
break;
case HAL_RTC_MSPINIT_CB_ID :
hrtc->MspInitCallback = pCallback;
break;
case HAL_RTC_MSPDEINIT_CB_ID :
hrtc->MspDeInitCallback = pCallback;
break;
default :
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (HAL_RTC_STATE_RESET == hrtc->State)
{
switch (CallbackID)
{
case HAL_RTC_MSPINIT_CB_ID :
hrtc->MspInitCallback = pCallback;
break;
case HAL_RTC_MSPDEINIT_CB_ID :
hrtc->MspDeInitCallback = pCallback;
break;
default :
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Return error status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hrtc);
return status;
}
/**
* @brief Unregister an RTC Callback
* RTC callback is redirected to the weak predefined callback
* @param hrtc RTC handle
* @param CallbackID ID of the callback to be unregistered
* This parameter can be one of the following values:
* @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID
* @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID
* @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
* @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(hrtc);
if (HAL_RTC_STATE_READY == hrtc->State)
{
switch (CallbackID)
{
case HAL_RTC_ALARM_A_EVENT_CB_ID :
hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback; /* Legacy weak AlarmAEventCallback */
break;
case HAL_RTC_TAMPER1_EVENT_CB_ID :
hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback; /* Legacy weak Tamper1EventCallback */
break;
case HAL_RTC_MSPINIT_CB_ID :
hrtc->MspInitCallback = HAL_RTC_MspInit;
break;
case HAL_RTC_MSPDEINIT_CB_ID :
hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
break;
default :
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (HAL_RTC_STATE_RESET == hrtc->State)
{
switch (CallbackID)
{
case HAL_RTC_MSPINIT_CB_ID :
hrtc->MspInitCallback = HAL_RTC_MspInit;
break;
case HAL_RTC_MSPDEINIT_CB_ID :
hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
break;
default :
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Return error status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hrtc);
return status;
}
#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
/**
* @brief Initializes the RTC MSP.
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval None
*/
__weak void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hrtc);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_RTC_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes the RTC MSP.
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval None
*/
__weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hrtc);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_RTC_MspDeInit could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup RTC_Exported_Functions_Group2 Time and Date functions
* @brief RTC Time and Date functions
*
@verbatim
===============================================================================
##### RTC Time and Date functions #####
===============================================================================
[..] This section provides functions allowing to configure Time and Date features
@endverbatim
* @{
*/
/**
* @brief Sets RTC current time.
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param sTime: Pointer to Time structure
* @param Format: Specifies the format of the entered parameters.
* This parameter can be one of the following values:
* @arg RTC_FORMAT_BIN: Binary data format
* @arg RTC_FORMAT_BCD: BCD data format
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
{
uint32_t counter_time = 0U, counter_alarm = 0U;
/* Check input parameters */
if ((hrtc == NULL) || (sTime == NULL))
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_RTC_FORMAT(Format));
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
if (Format == RTC_FORMAT_BIN)
{
assert_param(IS_RTC_HOUR24(sTime->Hours));
assert_param(IS_RTC_MINUTES(sTime->Minutes));
assert_param(IS_RTC_SECONDS(sTime->Seconds));
counter_time = (uint32_t)(((uint32_t)sTime->Hours * 3600U) + \
((uint32_t)sTime->Minutes * 60U) + \
((uint32_t)sTime->Seconds));
}
else
{
assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
counter_time = (((uint32_t)(RTC_Bcd2ToByte(sTime->Hours)) * 3600U) + \
((uint32_t)(RTC_Bcd2ToByte(sTime->Minutes)) * 60U) + \
((uint32_t)(RTC_Bcd2ToByte(sTime->Seconds))));
}
/* Write time counter in RTC registers */
if (RTC_WriteTimeCounter(hrtc, counter_time) != HAL_OK)
{
/* Set RTC state */
hrtc->State = HAL_RTC_STATE_ERROR;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_ERROR;
}
else
{
/* Clear Second and overflow flags */
CLEAR_BIT(hrtc->Instance->CRL, (RTC_FLAG_SEC | RTC_FLAG_OW));
/* Read current Alarm counter in RTC registers */
counter_alarm = RTC_ReadAlarmCounter(hrtc);
/* Set again alarm to match with new time if enabled */
if (counter_alarm != RTC_ALARM_RESETVALUE)
{
if (counter_alarm < counter_time)
{
/* Add 1 day to alarm counter*/
counter_alarm += (uint32_t)(24U * 3600U);
/* Write new Alarm counter in RTC registers */
if (RTC_WriteAlarmCounter(hrtc, counter_alarm) != HAL_OK)
{
/* Set RTC state */
hrtc->State = HAL_RTC_STATE_ERROR;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_ERROR;
}
}
}
hrtc->State = HAL_RTC_STATE_READY;
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
}
/**
* @brief Gets RTC current time.
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param sTime: Pointer to Time structure
* @param Format: Specifies the format of the entered parameters.
* This parameter can be one of the following values:
* @arg RTC_FORMAT_BIN: Binary data format
* @arg RTC_FORMAT_BCD: BCD data format
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
{
uint32_t counter_time = 0U, counter_alarm = 0U, days_elapsed = 0U, hours = 0U;
/* Check input parameters */
if ((hrtc == NULL) || (sTime == NULL))
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_RTC_FORMAT(Format));
/* Check if counter overflow occurred */
if (__HAL_RTC_OVERFLOW_GET_FLAG(hrtc, RTC_FLAG_OW))
{
return HAL_ERROR;
}
/* Read the time counter*/
counter_time = RTC_ReadTimeCounter(hrtc);
/* Fill the structure fields with the read parameters */
hours = counter_time / 3600U;
sTime->Minutes = (uint8_t)((counter_time % 3600U) / 60U);
sTime->Seconds = (uint8_t)((counter_time % 3600U) % 60U);
if (hours >= 24U)
{
/* Get number of days elapsed from last calculation */
days_elapsed = (hours / 24U);
/* Set Hours in RTC_TimeTypeDef structure*/
sTime->Hours = (hours % 24U);
/* Read Alarm counter in RTC registers */
counter_alarm = RTC_ReadAlarmCounter(hrtc);
/* Calculate remaining time to reach alarm (only if set and not yet expired)*/
if ((counter_alarm != RTC_ALARM_RESETVALUE) && (counter_alarm > counter_time))
{
counter_alarm -= counter_time;
}
else
{
/* In case of counter_alarm < counter_time */
/* Alarm expiration already occurred but alarm not deactivated */
counter_alarm = RTC_ALARM_RESETVALUE;
}
/* Set updated time in decreasing counter by number of days elapsed */
counter_time -= (days_elapsed * 24U * 3600U);
/* Write time counter in RTC registers */
if (RTC_WriteTimeCounter(hrtc, counter_time) != HAL_OK)
{
return HAL_ERROR;
}
/* Set updated alarm to be set */
if (counter_alarm != RTC_ALARM_RESETVALUE)
{
counter_alarm += counter_time;
/* Write time counter in RTC registers */
if (RTC_WriteAlarmCounter(hrtc, counter_alarm) != HAL_OK)
{
return HAL_ERROR;
}
}
else
{
/* Alarm already occurred. Set it to reset values to avoid unexpected expiration */
if (RTC_WriteAlarmCounter(hrtc, counter_alarm) != HAL_OK)
{
return HAL_ERROR;
}
}
/* Update date */
RTC_DateUpdate(hrtc, days_elapsed);
}
else
{
sTime->Hours = hours;
}
/* Check the input parameters format */
if (Format != RTC_FORMAT_BIN)
{
/* Convert the time structure parameters to BCD format */
sTime->Hours = (uint8_t)RTC_ByteToBcd2(sTime->Hours);
sTime->Minutes = (uint8_t)RTC_ByteToBcd2(sTime->Minutes);
sTime->Seconds = (uint8_t)RTC_ByteToBcd2(sTime->Seconds);
}
return HAL_OK;
}
/**
* @brief Sets RTC current date.
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param sDate: Pointer to date structure
* @param Format: specifies the format of the entered parameters.
* This parameter can be one of the following values:
* @arg RTC_FORMAT_BIN: Binary data format
* @arg RTC_FORMAT_BCD: BCD data format
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
{
uint32_t counter_time = 0U, counter_alarm = 0U, hours = 0U;
/* Check input parameters */
if ((hrtc == NULL) || (sDate == NULL))
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_RTC_FORMAT(Format));
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
if (Format == RTC_FORMAT_BIN)
{
assert_param(IS_RTC_YEAR(sDate->Year));
assert_param(IS_RTC_MONTH(sDate->Month));
assert_param(IS_RTC_DATE(sDate->Date));
/* Change the current date */
hrtc->DateToUpdate.Year = sDate->Year;
hrtc->DateToUpdate.Month = sDate->Month;
hrtc->DateToUpdate.Date = sDate->Date;
}
else
{
assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));
/* Change the current date */
hrtc->DateToUpdate.Year = RTC_Bcd2ToByte(sDate->Year);
hrtc->DateToUpdate.Month = RTC_Bcd2ToByte(sDate->Month);
hrtc->DateToUpdate.Date = RTC_Bcd2ToByte(sDate->Date);
}
/* WeekDay set by user can be ignored because automatically calculated */
hrtc->DateToUpdate.WeekDay = RTC_WeekDayNum(hrtc->DateToUpdate.Year, hrtc->DateToUpdate.Month, hrtc->DateToUpdate.Date);
sDate->WeekDay = hrtc->DateToUpdate.WeekDay;
/* Reset time to be aligned on the same day */
/* Read the time counter*/
counter_time = RTC_ReadTimeCounter(hrtc);
/* Fill the structure fields with the read parameters */
hours = counter_time / 3600U;
if (hours > 24U)
{
/* Set updated time in decreasing counter by number of days elapsed */
counter_time -= ((hours / 24U) * 24U * 3600U);
/* Write time counter in RTC registers */
if (RTC_WriteTimeCounter(hrtc, counter_time) != HAL_OK)
{
/* Set RTC state */
hrtc->State = HAL_RTC_STATE_ERROR;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_ERROR;
}
/* Read current Alarm counter in RTC registers */
counter_alarm = RTC_ReadAlarmCounter(hrtc);
/* Set again alarm to match with new time if enabled */
if (counter_alarm != RTC_ALARM_RESETVALUE)
{
if (counter_alarm < counter_time)
{
/* Add 1 day to alarm counter*/
counter_alarm += (uint32_t)(24U * 3600U);
/* Write new Alarm counter in RTC registers */
if (RTC_WriteAlarmCounter(hrtc, counter_alarm) != HAL_OK)
{
/* Set RTC state */
hrtc->State = HAL_RTC_STATE_ERROR;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_ERROR;
}
}
}
}
hrtc->State = HAL_RTC_STATE_READY ;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief Gets RTC current date.
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param sDate: Pointer to Date structure
* @param Format: Specifies the format of the entered parameters.
* This parameter can be one of the following values:
* @arg RTC_FORMAT_BIN: Binary data format
* @arg RTC_FORMAT_BCD: BCD data format
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
{
RTC_TimeTypeDef stime = {0U};
/* Check input parameters */
if ((hrtc == NULL) || (sDate == NULL))
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_RTC_FORMAT(Format));
/* Call HAL_RTC_GetTime function to update date if counter higher than 24 hours */
if (HAL_RTC_GetTime(hrtc, &stime, RTC_FORMAT_BIN) != HAL_OK)
{
return HAL_ERROR;
}
/* Fill the structure fields with the read parameters */
sDate->WeekDay = hrtc->DateToUpdate.WeekDay;
sDate->Year = hrtc->DateToUpdate.Year;
sDate->Month = hrtc->DateToUpdate.Month;
sDate->Date = hrtc->DateToUpdate.Date;
/* Check the input parameters format */
if (Format != RTC_FORMAT_BIN)
{
/* Convert the date structure parameters to BCD format */
sDate->Year = (uint8_t)RTC_ByteToBcd2(sDate->Year);
sDate->Month = (uint8_t)RTC_ByteToBcd2(sDate->Month);
sDate->Date = (uint8_t)RTC_ByteToBcd2(sDate->Date);
}
return HAL_OK;
}
/**
* @}
*/
/** @defgroup RTC_Exported_Functions_Group3 Alarm functions
* @brief RTC Alarm functions
*
@verbatim
===============================================================================
##### RTC Alarm functions #####
===============================================================================
[..] This section provides functions allowing to configure Alarm feature
@endverbatim
* @{
*/
/**
* @brief Sets the specified RTC Alarm.
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param sAlarm: Pointer to Alarm structure
* @param Format: Specifies the format of the entered parameters.
* This parameter can be one of the following values:
* @arg RTC_FORMAT_BIN: Binary data format
* @arg RTC_FORMAT_BCD: BCD data format
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
{
uint32_t counter_alarm = 0U, counter_time;
RTC_TimeTypeDef stime = {0U};
/* Check input parameters */
if ((hrtc == NULL) || (sAlarm == NULL))
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_RTC_FORMAT(Format));
assert_param(IS_RTC_ALARM(sAlarm->Alarm));
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Call HAL_RTC_GetTime function to update date if counter higher than 24 hours */
if (HAL_RTC_GetTime(hrtc, &stime, RTC_FORMAT_BIN) != HAL_OK)
{
return HAL_ERROR;
}
/* Convert time in seconds */
counter_time = (uint32_t)(((uint32_t)stime.Hours * 3600U) + \
((uint32_t)stime.Minutes * 60U) + \
((uint32_t)stime.Seconds));
if (Format == RTC_FORMAT_BIN)
{
assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
counter_alarm = (uint32_t)(((uint32_t)sAlarm->AlarmTime.Hours * 3600U) + \
((uint32_t)sAlarm->AlarmTime.Minutes * 60U) + \
((uint32_t)sAlarm->AlarmTime.Seconds));
}
else
{
assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
counter_alarm = (((uint32_t)(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)) * 3600U) + \
((uint32_t)(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)) * 60U) + \
((uint32_t)RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
}
/* Check that requested alarm should expire in the same day (otherwise add 1 day) */
if (counter_alarm < counter_time)
{
/* Add 1 day to alarm counter*/
counter_alarm += (uint32_t)(24U * 3600U);
}
/* Write Alarm counter in RTC registers */
if (RTC_WriteAlarmCounter(hrtc, counter_alarm) != HAL_OK)
{
/* Set RTC state */
hrtc->State = HAL_RTC_STATE_ERROR;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_ERROR;
}
else
{
hrtc->State = HAL_RTC_STATE_READY;
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
}
/**
* @brief Sets the specified RTC Alarm with Interrupt
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param sAlarm: Pointer to Alarm structure
* @param Format: Specifies the format of the entered parameters.
* This parameter can be one of the following values:
* @arg RTC_FORMAT_BIN: Binary data format
* @arg RTC_FORMAT_BCD: BCD data format
* @note The HAL_RTC_SetTime() must be called before enabling the Alarm feature.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
{
uint32_t counter_alarm = 0U, counter_time;
RTC_TimeTypeDef stime = {0U};
/* Check input parameters */
if ((hrtc == NULL) || (sAlarm == NULL))
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_RTC_FORMAT(Format));
assert_param(IS_RTC_ALARM(sAlarm->Alarm));
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Call HAL_RTC_GetTime function to update date if counter higher than 24 hours */
if (HAL_RTC_GetTime(hrtc, &stime, RTC_FORMAT_BIN) != HAL_OK)
{
return HAL_ERROR;
}
/* Convert time in seconds */
counter_time = (uint32_t)(((uint32_t)stime.Hours * 3600U) + \
((uint32_t)stime.Minutes * 60U) + \
((uint32_t)stime.Seconds));
if (Format == RTC_FORMAT_BIN)
{
assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
counter_alarm = (uint32_t)(((uint32_t)sAlarm->AlarmTime.Hours * 3600U) + \
((uint32_t)sAlarm->AlarmTime.Minutes * 60U) + \
((uint32_t)sAlarm->AlarmTime.Seconds));
}
else
{
assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
counter_alarm = (((uint32_t)(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)) * 3600U) + \
((uint32_t)(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)) * 60U) + \
((uint32_t)RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
}
/* Check that requested alarm should expire in the same day (otherwise add 1 day) */
if (counter_alarm < counter_time)
{
/* Add 1 day to alarm counter*/
counter_alarm += (uint32_t)(24U * 3600U);
}
/* Write alarm counter in RTC registers */
if (RTC_WriteAlarmCounter(hrtc, counter_alarm) != HAL_OK)
{
/* Set RTC state */
hrtc->State = HAL_RTC_STATE_ERROR;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_ERROR;
}
else
{
/* Clear flag alarm A */
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
/* Configure the Alarm interrupt */
__HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRA);
/* RTC Alarm Interrupt Configuration: EXTI configuration */
__HAL_RTC_ALARM_EXTI_ENABLE_IT();
__HAL_RTC_ALARM_EXTI_ENABLE_RISING_EDGE();
hrtc->State = HAL_RTC_STATE_READY;
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
}
/**
* @brief Gets the RTC Alarm value and masks.
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param sAlarm: Pointer to Date structure
* @param Alarm: Specifies the Alarm.
* This parameter can be one of the following values:
* @arg RTC_ALARM_A: Alarm
* @param Format: Specifies the format of the entered parameters.
* This parameter can be one of the following values:
* @arg RTC_FORMAT_BIN: Binary data format
* @arg RTC_FORMAT_BCD: BCD data format
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format)
{
uint32_t counter_alarm = 0U;
/* Prevent unused argument(s) compilation warning */
UNUSED(Alarm);
/* Check input parameters */
if ((hrtc == NULL) || (sAlarm == NULL))
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_RTC_FORMAT(Format));
assert_param(IS_RTC_ALARM(Alarm));
/* Read Alarm counter in RTC registers */
counter_alarm = RTC_ReadAlarmCounter(hrtc);
/* Fill the structure with the read parameters */
/* Set hours in a day range (between 0 to 24)*/
sAlarm->AlarmTime.Hours = (uint32_t)((counter_alarm / 3600U) % 24U);
sAlarm->AlarmTime.Minutes = (uint32_t)((counter_alarm % 3600U) / 60U);
sAlarm->AlarmTime.Seconds = (uint32_t)((counter_alarm % 3600U) % 60U);
if (Format != RTC_FORMAT_BIN)
{
sAlarm->AlarmTime.Hours = RTC_ByteToBcd2(sAlarm->AlarmTime.Hours);
sAlarm->AlarmTime.Minutes = RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes);
sAlarm->AlarmTime.Seconds = RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds);
}
return HAL_OK;
}
/**
* @brief Deactivate the specified RTC Alarm
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param Alarm: Specifies the Alarm.
* This parameter can be one of the following values:
* @arg RTC_ALARM_A: AlarmA
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(Alarm);
/* Check the parameters */
assert_param(IS_RTC_ALARM(Alarm));
/* Check input parameters */
if (hrtc == NULL)
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* In case of interrupt mode is used, the interrupt source must disabled */
__HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);
/* Set Initialization mode */
if (RTC_EnterInitMode(hrtc) != HAL_OK)
{
/* Set RTC state */
hrtc->State = HAL_RTC_STATE_ERROR;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_ERROR;
}
else
{
/* Clear flag alarm A */
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
/* Set to default values ALRH & ALRL registers */
WRITE_REG(hrtc->Instance->ALRH, RTC_ALARM_RESETVALUE_REGISTER);
WRITE_REG(hrtc->Instance->ALRL, RTC_ALARM_RESETVALUE_REGISTER);
/* RTC Alarm Interrupt Configuration: Disable EXTI configuration */
__HAL_RTC_ALARM_EXTI_DISABLE_IT();
/* Wait for synchro */
if (RTC_ExitInitMode(hrtc) != HAL_OK)
{
hrtc->State = HAL_RTC_STATE_ERROR;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_ERROR;
}
}
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief This function handles Alarm interrupt request.
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval None
*/
void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc)
{
if (__HAL_RTC_ALARM_GET_IT_SOURCE(hrtc, RTC_IT_ALRA))
{
/* Get the status of the Interrupt */
if (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) != (uint32_t)RESET)
{
/* AlarmA callback */
#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
hrtc->AlarmAEventCallback(hrtc);
#else
HAL_RTC_AlarmAEventCallback(hrtc);
#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
/* Clear the Alarm interrupt pending bit */
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
}
}
/* Clear the EXTI's line Flag for RTC Alarm */
__HAL_RTC_ALARM_EXTI_CLEAR_FLAG();
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
}
/**
* @brief Alarm A callback.
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval None
*/
__weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hrtc);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_RTC_AlarmAEventCallback could be implemented in the user file
*/
}
/**
* @brief This function handles AlarmA Polling request.
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
{
uint32_t tickstart = HAL_GetTick();
/* Check input parameters */
if (hrtc == NULL)
{
return HAL_ERROR;
}
while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) == RESET)
{
if (Timeout != HAL_MAX_DELAY)
{
if ((Timeout == 0) || ((HAL_GetTick() - tickstart) > Timeout))
{
hrtc->State = HAL_RTC_STATE_TIMEOUT;
return HAL_TIMEOUT;
}
}
}
/* Clear the Alarm interrupt pending bit */
__HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
return HAL_OK;
}
/**
* @}
*/
/** @defgroup RTC_Exported_Functions_Group4 Peripheral State functions
* @brief Peripheral State functions
*
@verbatim
===============================================================================
##### Peripheral State functions #####
===============================================================================
[..]
This subsection provides functions allowing to
(+) Get RTC state
@endverbatim
* @{
*/
/**
* @brief Returns the RTC state.
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval HAL state
*/
HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef *hrtc)
{
return hrtc->State;
}
/**
* @}
*/
/** @defgroup RTC_Exported_Functions_Group5 Peripheral Control functions
* @brief Peripheral Control functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..]
This subsection provides functions allowing to
(+) Wait for RTC Time and Date Synchronization
@endverbatim
* @{
*/
/**
* @brief Waits until the RTC registers (RTC_CNT, RTC_ALR and RTC_PRL)
* are synchronized with RTC APB clock.
* @note This function must be called before any read operation after an APB reset
* or an APB clock stop.
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef *hrtc)
{
uint32_t tickstart = 0U;
/* Check input parameters */
if (hrtc == NULL)
{
return HAL_ERROR;
}
/* Clear RSF flag */
CLEAR_BIT(hrtc->Instance->CRL, RTC_FLAG_RSF);
tickstart = HAL_GetTick();
/* Wait the registers to be synchronised */
while ((hrtc->Instance->CRL & RTC_FLAG_RSF) == (uint32_t)RESET)
{
if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup RTC_Private_Functions
* @{
*/
/**
* @brief Read the time counter available in RTC_CNT registers.
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval Time counter
*/
static uint32_t RTC_ReadTimeCounter(RTC_HandleTypeDef *hrtc)
{
uint16_t high1 = 0U, high2 = 0U, low = 0U;
uint32_t timecounter = 0U;
high1 = READ_REG(hrtc->Instance->CNTH & RTC_CNTH_RTC_CNT);
low = READ_REG(hrtc->Instance->CNTL & RTC_CNTL_RTC_CNT);
high2 = READ_REG(hrtc->Instance->CNTH & RTC_CNTH_RTC_CNT);
if (high1 != high2)
{
/* In this case the counter roll over during reading of CNTL and CNTH registers,
read again CNTL register then return the counter value */
timecounter = (((uint32_t) high2 << 16U) | READ_REG(hrtc->Instance->CNTL & RTC_CNTL_RTC_CNT));
}
else
{
/* No counter roll over during reading of CNTL and CNTH registers, counter
value is equal to first value of CNTL and CNTH */
timecounter = (((uint32_t) high1 << 16U) | low);
}
return timecounter;
}
/**
* @brief Write the time counter in RTC_CNT registers.
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param TimeCounter: Counter to write in RTC_CNT registers
* @retval HAL status
*/
static HAL_StatusTypeDef RTC_WriteTimeCounter(RTC_HandleTypeDef *hrtc, uint32_t TimeCounter)
{
HAL_StatusTypeDef status = HAL_OK;
/* Set Initialization mode */
if (RTC_EnterInitMode(hrtc) != HAL_OK)
{
status = HAL_ERROR;
}
else
{
/* Set RTC COUNTER MSB word */
WRITE_REG(hrtc->Instance->CNTH, (TimeCounter >> 16U));
/* Set RTC COUNTER LSB word */
WRITE_REG(hrtc->Instance->CNTL, (TimeCounter & RTC_CNTL_RTC_CNT));
/* Wait for synchro */
if (RTC_ExitInitMode(hrtc) != HAL_OK)
{
status = HAL_ERROR;
}
}
return status;
}
/**
* @brief Read the time counter available in RTC_ALR registers.
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval Time counter
*/
static uint32_t RTC_ReadAlarmCounter(RTC_HandleTypeDef *hrtc)
{
uint16_t high1 = 0U, low = 0U;
high1 = READ_REG(hrtc->Instance->ALRH & RTC_CNTH_RTC_CNT);
low = READ_REG(hrtc->Instance->ALRL & RTC_CNTL_RTC_CNT);
return (((uint32_t) high1 << 16U) | low);
}
/**
* @brief Write the time counter in RTC_ALR registers.
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param AlarmCounter: Counter to write in RTC_ALR registers
* @retval HAL status
*/
static HAL_StatusTypeDef RTC_WriteAlarmCounter(RTC_HandleTypeDef *hrtc, uint32_t AlarmCounter)
{
HAL_StatusTypeDef status = HAL_OK;
/* Set Initialization mode */
if (RTC_EnterInitMode(hrtc) != HAL_OK)
{
status = HAL_ERROR;
}
else
{
/* Set RTC COUNTER MSB word */
WRITE_REG(hrtc->Instance->ALRH, (AlarmCounter >> 16U));
/* Set RTC COUNTER LSB word */
WRITE_REG(hrtc->Instance->ALRL, (AlarmCounter & RTC_ALRL_RTC_ALR));
/* Wait for synchro */
if (RTC_ExitInitMode(hrtc) != HAL_OK)
{
status = HAL_ERROR;
}
}
return status;
}
/**
* @brief Enters the RTC Initialization mode.
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval HAL status
*/
static HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef *hrtc)
{
uint32_t tickstart = 0U;
tickstart = HAL_GetTick();
/* Wait till RTC is in INIT state and if Time out is reached exit */
while ((hrtc->Instance->CRL & RTC_CRL_RTOFF) == (uint32_t)RESET)
{
if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
return HAL_OK;
}
/**
* @brief Exit the RTC Initialization mode.
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval HAL status
*/
static HAL_StatusTypeDef RTC_ExitInitMode(RTC_HandleTypeDef *hrtc)
{
uint32_t tickstart = 0U;
/* Disable the write protection for RTC registers */
__HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
tickstart = HAL_GetTick();
/* Wait till RTC is in INIT state and if Time out is reached exit */
while ((hrtc->Instance->CRL & RTC_CRL_RTOFF) == (uint32_t)RESET)
{
if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
/**
* @brief Converts a 2 digit decimal to BCD format.
* @param Value: Byte to be converted
* @retval Converted byte
*/
static uint8_t RTC_ByteToBcd2(uint8_t Value)
{
uint32_t bcdhigh = 0U;
while (Value >= 10U)
{
bcdhigh++;
Value -= 10U;
}
return ((uint8_t)(bcdhigh << 4U) | Value);
}
/**
* @brief Converts from 2 digit BCD to Binary.
* @param Value: BCD value to be converted
* @retval Converted word
*/
static uint8_t RTC_Bcd2ToByte(uint8_t Value)
{
uint32_t tmp = 0U;
tmp = ((uint8_t)(Value & (uint8_t)0xF0) >> (uint8_t)0x4) * 10U;
return (tmp + (Value & (uint8_t)0x0F));
}
/**
* @brief Updates date when time is 23:59:59.
* @param hrtc pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param DayElapsed: Number of days elapsed from last date update
* @retval None
*/
static void RTC_DateUpdate(RTC_HandleTypeDef *hrtc, uint32_t DayElapsed)
{
uint32_t year = 0U, month = 0U, day = 0U;
uint32_t loop = 0U;
/* Get the current year*/
year = hrtc->DateToUpdate.Year;
/* Get the current month and day */
month = hrtc->DateToUpdate.Month;
day = hrtc->DateToUpdate.Date;
for (loop = 0U; loop < DayElapsed; loop++)
{
if ((month == 1U) || (month == 3U) || (month == 5U) || (month == 7U) || \
(month == 8U) || (month == 10U) || (month == 12U))
{
if (day < 31U)
{
day++;
}
/* Date structure member: day = 31 */
else
{
if (month != 12U)
{
month++;
day = 1U;
}
/* Date structure member: day = 31 & month =12 */
else
{
month = 1U;
day = 1U;
year++;
}
}
}
else if ((month == 4U) || (month == 6U) || (month == 9U) || (month == 11U))
{
if (day < 30U)
{
day++;
}
/* Date structure member: day = 30 */
else
{
month++;
day = 1U;
}
}
else if (month == 2U)
{
if (day < 28U)
{
day++;
}
else if (day == 28U)
{
/* Leap year */
if (RTC_IsLeapYear(year))
{
day++;
}
else
{
month++;
day = 1U;
}
}
else if (day == 29U)
{
month++;
day = 1U;
}
}
}
/* Update year */
hrtc->DateToUpdate.Year = year;
/* Update day and month */
hrtc->DateToUpdate.Month = month;
hrtc->DateToUpdate.Date = day;
/* Update day of the week */
hrtc->DateToUpdate.WeekDay = RTC_WeekDayNum(year, month, day);
}
/**
* @brief Check whether the passed year is Leap or not.
* @param nYear year to check
* @retval 1: leap year
* 0: not leap year
*/
static uint8_t RTC_IsLeapYear(uint16_t nYear)
{
if ((nYear % 4U) != 0U)
{
return 0U;
}
if ((nYear % 100U) != 0U)
{
return 1U;
}
if ((nYear % 400U) == 0U)
{
return 1U;
}
else
{
return 0U;
}
}
/**
* @brief Determines the week number, the day number and the week day number.
* @param nYear year to check
* @param nMonth Month to check
* @param nDay Day to check
* @note Day is calculated with hypothesis that year > 2000
* @retval Value which can take one of the following parameters:
* @arg RTC_WEEKDAY_MONDAY
* @arg RTC_WEEKDAY_TUESDAY
* @arg RTC_WEEKDAY_WEDNESDAY
* @arg RTC_WEEKDAY_THURSDAY
* @arg RTC_WEEKDAY_FRIDAY
* @arg RTC_WEEKDAY_SATURDAY
* @arg RTC_WEEKDAY_SUNDAY
*/
static uint8_t RTC_WeekDayNum(uint32_t nYear, uint8_t nMonth, uint8_t nDay)
{
uint32_t year = 0U, weekday = 0U;
year = 2000U + nYear;
if (nMonth < 3U)
{
/*D = { [(23 x month)/9] + day + 4 + year + [(year-1)/4] - [(year-1)/100] + [(year-1)/400] } mod 7*/
weekday = (((23U * nMonth) / 9U) + nDay + 4U + year + ((year - 1U) / 4U) - ((year - 1U) / 100U) + ((year - 1U) / 400U)) % 7U;
}
else
{
/*D = { [(23 x month)/9] + day + 4 + year + [year/4] - [year/100] + [year/400] - 2 } mod 7*/
weekday = (((23U * nMonth) / 9U) + nDay + 4U + year + (year / 4U) - (year / 100U) + (year / 400U) - 2U) % 7U;
}
return (uint8_t)weekday;
}
/**
* @}
*/
#endif /* HAL_RTC_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

View File

@@ -0,0 +1,575 @@
/**
******************************************************************************
* @file stm32f1xx_hal_rtc_ex.c
* @author MCD Application Team
* @brief Extended RTC HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Real Time Clock (RTC) Extension peripheral:
* + RTC Tamper functions
* + Extension Control functions
* + Extension RTC features functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
#ifdef HAL_RTC_MODULE_ENABLED
/** @defgroup RTCEx RTCEx
* @brief RTC Extended HAL module driver
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/** @defgroup RTCEx_Private_Macros RTCEx Private Macros
* @{
*/
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup RTCEx_Exported_Functions RTCEx Exported Functions
* @{
*/
/** @defgroup RTCEx_Exported_Functions_Group1 RTC Tamper functions
* @brief RTC Tamper functions
*
@verbatim
===============================================================================
##### RTC Tamper functions #####
===============================================================================
[..] This section provides functions allowing to configure Tamper feature
@endverbatim
* @{
*/
/**
* @brief Sets Tamper
* @note By calling this API we disable the tamper interrupt for all tampers.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param sTamper: Pointer to Tamper Structure.
* @note Tamper can be enabled only if ASOE and CCO bit are reset
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_SetTamper(RTC_HandleTypeDef *hrtc, RTC_TamperTypeDef *sTamper)
{
/* Check input parameters */
if ((hrtc == NULL) || (sTamper == NULL))
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_RTC_TAMPER(sTamper->Tamper));
assert_param(IS_RTC_TAMPER_TRIGGER(sTamper->Trigger));
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
if (HAL_IS_BIT_SET(BKP->RTCCR, (BKP_RTCCR_CCO | BKP_RTCCR_ASOE)))
{
hrtc->State = HAL_RTC_STATE_ERROR;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_ERROR;
}
MODIFY_REG(BKP->CR, (BKP_CR_TPE | BKP_CR_TPAL), (sTamper->Tamper | (sTamper->Trigger)));
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief Sets Tamper with interrupt.
* @note By calling this API we force the tamper interrupt for all tampers.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param sTamper: Pointer to RTC Tamper.
* @note Tamper can be enabled only if ASOE and CCO bit are reset
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_SetTamper_IT(RTC_HandleTypeDef *hrtc, RTC_TamperTypeDef *sTamper)
{
/* Check input parameters */
if ((hrtc == NULL) || (sTamper == NULL))
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_RTC_TAMPER(sTamper->Tamper));
assert_param(IS_RTC_TAMPER_TRIGGER(sTamper->Trigger));
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
if (HAL_IS_BIT_SET(BKP->RTCCR, (BKP_RTCCR_CCO | BKP_RTCCR_ASOE)))
{
hrtc->State = HAL_RTC_STATE_ERROR;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_ERROR;
}
MODIFY_REG(BKP->CR, (BKP_CR_TPE | BKP_CR_TPAL), (sTamper->Tamper | (sTamper->Trigger)));
/* Configure the Tamper Interrupt in the BKP->CSR */
__HAL_RTC_TAMPER_ENABLE_IT(hrtc, RTC_IT_TAMP1);
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief Deactivates Tamper.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param Tamper: Selected tamper pin.
* This parameter can be a value of @ref RTCEx_Tamper_Pins_Definitions
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_DeactivateTamper(RTC_HandleTypeDef *hrtc, uint32_t Tamper)
{
/* Check input parameters */
if (hrtc == NULL)
{
return HAL_ERROR;
}
/* Prevent unused argument(s) compilation warning */
UNUSED(Tamper);
assert_param(IS_RTC_TAMPER(Tamper));
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Disable the selected Tamper pin */
CLEAR_BIT(BKP->CR, BKP_CR_TPE);
/* Disable the Tamper Interrupt in the BKP->CSR */
/* Configure the Tamper Interrupt in the BKP->CSR */
__HAL_RTC_TAMPER_DISABLE_IT(hrtc, RTC_IT_TAMP1);
/* Clear the Tamper interrupt pending bit */
__HAL_RTC_TAMPER_CLEAR_FLAG(hrtc, RTC_FLAG_TAMP1F);
SET_BIT(BKP->CSR, BKP_CSR_CTE);
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief This function handles Tamper interrupt request.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval None
*/
void HAL_RTCEx_TamperIRQHandler(RTC_HandleTypeDef *hrtc)
{
/* Get the status of the Interrupt */
if (__HAL_RTC_TAMPER_GET_IT_SOURCE(hrtc, RTC_IT_TAMP1))
{
/* Get the TAMPER Interrupt enable bit and pending bit */
if (__HAL_RTC_TAMPER_GET_FLAG(hrtc, RTC_FLAG_TAMP1F) != (uint32_t)RESET)
{
/* Tamper callback */
#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
hrtc->Tamper1EventCallback(hrtc);
#else
HAL_RTCEx_Tamper1EventCallback(hrtc);
#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
/* Clear the Tamper interrupt pending bit */
__HAL_RTC_TAMPER_CLEAR_FLAG(hrtc, RTC_FLAG_TAMP1F);
}
}
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
}
/**
* @brief Tamper 1 callback.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval None
*/
__weak void HAL_RTCEx_Tamper1EventCallback(RTC_HandleTypeDef *hrtc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hrtc);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_RTCEx_Tamper1EventCallback could be implemented in the user file
*/
}
/**
* @brief This function handles Tamper1 Polling.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param Timeout: Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_PollForTamper1Event(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
{
uint32_t tickstart = HAL_GetTick();
/* Check input parameters */
if (hrtc == NULL)
{
return HAL_ERROR;
}
/* Get the status of the Interrupt */
while (__HAL_RTC_TAMPER_GET_FLAG(hrtc, RTC_FLAG_TAMP1F) == RESET)
{
if (Timeout != HAL_MAX_DELAY)
{
if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
{
hrtc->State = HAL_RTC_STATE_TIMEOUT;
return HAL_TIMEOUT;
}
}
}
/* Clear the Tamper Flag */
__HAL_RTC_TAMPER_CLEAR_FLAG(hrtc, RTC_FLAG_TAMP1F);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
return HAL_OK;
}
/**
* @}
*/
/** @defgroup RTCEx_Exported_Functions_Group2 RTC Second functions
* @brief RTC Second functions
*
@verbatim
===============================================================================
##### RTC Second functions #####
===============================================================================
[..] This section provides functions implementing second interrupt handlers
@endverbatim
* @{
*/
/**
* @brief Sets Interrupt for second
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_SetSecond_IT(RTC_HandleTypeDef *hrtc)
{
/* Check input parameters */
if (hrtc == NULL)
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Enable Second interruption */
__HAL_RTC_SECOND_ENABLE_IT(hrtc, RTC_IT_SEC);
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief Deactivates Second.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_DeactivateSecond(RTC_HandleTypeDef *hrtc)
{
/* Check input parameters */
if (hrtc == NULL)
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Deactivate Second interruption*/
__HAL_RTC_SECOND_DISABLE_IT(hrtc, RTC_IT_SEC);
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @brief This function handles second interrupt request.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval None
*/
void HAL_RTCEx_RTCIRQHandler(RTC_HandleTypeDef *hrtc)
{
if (__HAL_RTC_SECOND_GET_IT_SOURCE(hrtc, RTC_IT_SEC))
{
/* Get the status of the Interrupt */
if (__HAL_RTC_SECOND_GET_FLAG(hrtc, RTC_FLAG_SEC))
{
/* Check if Overrun occurred */
if (__HAL_RTC_SECOND_GET_FLAG(hrtc, RTC_FLAG_OW))
{
/* Second error callback */
HAL_RTCEx_RTCEventErrorCallback(hrtc);
/* Clear flag Second */
__HAL_RTC_OVERFLOW_CLEAR_FLAG(hrtc, RTC_FLAG_OW);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_ERROR;
}
else
{
/* Second callback */
HAL_RTCEx_RTCEventCallback(hrtc);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
}
/* Clear flag Second */
__HAL_RTC_SECOND_CLEAR_FLAG(hrtc, RTC_FLAG_SEC);
}
}
}
/**
* @brief Second event callback.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval None
*/
__weak void HAL_RTCEx_RTCEventCallback(RTC_HandleTypeDef *hrtc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hrtc);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_RTCEx_RTCEventCallback could be implemented in the user file
*/
}
/**
* @brief Second event error callback.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @retval None
*/
__weak void HAL_RTCEx_RTCEventErrorCallback(RTC_HandleTypeDef *hrtc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hrtc);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_RTCEx_RTCEventErrorCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup RTCEx_Exported_Functions_Group3 Extended Peripheral Control functions
* @brief Extended Peripheral Control functions
*
@verbatim
===============================================================================
##### Extension Peripheral Control functions #####
===============================================================================
[..]
This subsection provides functions allowing to
(+) Writes a data in a specified RTC Backup data register
(+) Read a data in a specified RTC Backup data register
(+) Sets the Smooth calibration parameters.
@endverbatim
* @{
*/
/**
* @brief Writes a data in a specified RTC Backup data register.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param BackupRegister: RTC Backup data Register number.
* This parameter can be: RTC_BKP_DRx where x can be from 1 to 10 (or 42) to
* specify the register (depending devices).
* @param Data: Data to be written in the specified RTC Backup data register.
* @retval None
*/
void HAL_RTCEx_BKUPWrite(RTC_HandleTypeDef *hrtc, uint32_t BackupRegister, uint32_t Data)
{
uint32_t tmp = 0U;
/* Prevent unused argument(s) compilation warning */
UNUSED(hrtc);
/* Check the parameters */
assert_param(IS_RTC_BKP(BackupRegister));
tmp = (uint32_t)BKP_BASE;
tmp += (BackupRegister * 4U);
*(__IO uint32_t *) tmp = (Data & BKP_DR1_D);
}
/**
* @brief Reads data from the specified RTC Backup data Register.
* @param hrtc: pointer to a RTC_HandleTypeDef structure that contains
* the configuration information for RTC.
* @param BackupRegister: RTC Backup data Register number.
* This parameter can be: RTC_BKP_DRx where x can be from 1 to 10 (or 42) to
* specify the register (depending devices).
* @retval Read value
*/
uint32_t HAL_RTCEx_BKUPRead(RTC_HandleTypeDef *hrtc, uint32_t BackupRegister)
{
uint32_t backupregister = 0U;
uint32_t pvalue = 0U;
/* Prevent unused argument(s) compilation warning */
UNUSED(hrtc);
/* Check the parameters */
assert_param(IS_RTC_BKP(BackupRegister));
backupregister = (uint32_t)BKP_BASE;
backupregister += (BackupRegister * 4U);
pvalue = (*(__IO uint32_t *)(backupregister)) & BKP_DR1_D;
/* Read the specified register */
return pvalue;
}
/**
* @brief Sets the Smooth calibration parameters.
* @param hrtc: RTC handle
* @param SmoothCalibPeriod: Not used (only present for compatibility with another families)
* @param SmoothCalibPlusPulses: Not used (only present for compatibility with another families)
* @param SmouthCalibMinusPulsesValue: specifies the RTC Clock Calibration value.
* This parameter must be a number between 0 and 0x7F.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_RTCEx_SetSmoothCalib(RTC_HandleTypeDef *hrtc, uint32_t SmoothCalibPeriod, uint32_t SmoothCalibPlusPulses, uint32_t SmouthCalibMinusPulsesValue)
{
/* Check input parameters */
if (hrtc == NULL)
{
return HAL_ERROR;
}
/* Prevent unused argument(s) compilation warning */
UNUSED(SmoothCalibPeriod);
UNUSED(SmoothCalibPlusPulses);
/* Check the parameters */
assert_param(IS_RTC_SMOOTH_CALIB_MINUS(SmouthCalibMinusPulsesValue));
/* Process Locked */
__HAL_LOCK(hrtc);
hrtc->State = HAL_RTC_STATE_BUSY;
/* Sets RTC Clock Calibration value.*/
MODIFY_REG(BKP->RTCCR, BKP_RTCCR_CAL, SmouthCalibMinusPulsesValue);
/* Change RTC state */
hrtc->State = HAL_RTC_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hrtc);
return HAL_OK;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_RTC_MODULE_ENABLED */
/**
* @}
*/

View File

@@ -0,0 +1,4025 @@
/**
******************************************************************************
* @file stm32f1xx_hal_spi.c
* @author MCD Application Team
* @brief SPI HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Serial Peripheral Interface (SPI) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
* + Peripheral Control functions
* + Peripheral State functions
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The SPI HAL driver can be used as follows:
(#) Declare a SPI_HandleTypeDef handle structure, for example:
SPI_HandleTypeDef hspi;
(#)Initialize the SPI low level resources by implementing the HAL_SPI_MspInit() API:
(##) Enable the SPIx interface clock
(##) SPI pins configuration
(+++) Enable the clock for the SPI GPIOs
(+++) Configure these SPI pins as alternate function push-pull
(##) NVIC configuration if you need to use interrupt process
(+++) Configure the SPIx interrupt priority
(+++) Enable the NVIC SPI IRQ handle
(##) DMA Configuration if you need to use DMA process
(+++) Declare a DMA_HandleTypeDef handle structure for the transmit or receive Stream/Channel
(+++) Enable the DMAx clock
(+++) Configure the DMA handle parameters
(+++) Configure the DMA Tx or Rx Stream/Channel
(+++) Associate the initialized hdma_tx(or _rx) handle to the hspi DMA Tx or Rx handle
(+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx
or Rx Stream/Channel
(#) Program the Mode, BidirectionalMode , Data size, Baudrate Prescaler, NSS
management, Clock polarity and phase, FirstBit and CRC configuration in the hspi Init structure.
(#) Initialize the SPI registers by calling the HAL_SPI_Init() API:
(++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
by calling the customized HAL_SPI_MspInit() API.
[..]
Circular mode restriction:
(#) The DMA circular mode cannot be used when the SPI is configured in these modes:
(##) Master 2Lines RxOnly
(##) Master 1Line Rx
(#) The CRC feature is not managed when the DMA circular mode is enabled
(#) When the SPI DMA Pause/Stop features are used, we must use the following APIs
the HAL_SPI_DMAPause()/ HAL_SPI_DMAStop() only under the SPI callbacks
[..]
Master Receive mode restriction:
(#) In Master unidirectional receive-only mode (MSTR =1, BIDIMODE=0, RXONLY=1) or
bidirectional receive mode (MSTR=1, BIDIMODE=1, BIDIOE=0), to ensure that the SPI
does not initiate a new transfer the following procedure has to be respected:
(##) HAL_SPI_DeInit()
(##) HAL_SPI_Init()
[..]
Callback registration:
(#) The compilation flag USE_HAL_SPI_REGISTER_CALLBACKS when set to 1U
allows the user to configure dynamically the driver callbacks.
Use Functions HAL_SPI_RegisterCallback() to register an interrupt callback.
Function HAL_SPI_RegisterCallback() allows to register following callbacks:
(++) TxCpltCallback : SPI Tx Completed callback
(++) RxCpltCallback : SPI Rx Completed callback
(++) TxRxCpltCallback : SPI TxRx Completed callback
(++) TxHalfCpltCallback : SPI Tx Half Completed callback
(++) RxHalfCpltCallback : SPI Rx Half Completed callback
(++) TxRxHalfCpltCallback : SPI TxRx Half Completed callback
(++) ErrorCallback : SPI Error callback
(++) AbortCpltCallback : SPI Abort callback
(++) MspInitCallback : SPI Msp Init callback
(++) MspDeInitCallback : SPI Msp DeInit callback
This function takes as parameters the HAL peripheral handle, the Callback ID
and a pointer to the user callback function.
(#) Use function HAL_SPI_UnRegisterCallback to reset a callback to the default
weak function.
HAL_SPI_UnRegisterCallback takes as parameters the HAL peripheral handle,
and the Callback ID.
This function allows to reset following callbacks:
(++) TxCpltCallback : SPI Tx Completed callback
(++) RxCpltCallback : SPI Rx Completed callback
(++) TxRxCpltCallback : SPI TxRx Completed callback
(++) TxHalfCpltCallback : SPI Tx Half Completed callback
(++) RxHalfCpltCallback : SPI Rx Half Completed callback
(++) TxRxHalfCpltCallback : SPI TxRx Half Completed callback
(++) ErrorCallback : SPI Error callback
(++) AbortCpltCallback : SPI Abort callback
(++) MspInitCallback : SPI Msp Init callback
(++) MspDeInitCallback : SPI Msp DeInit callback
[..]
By default, after the HAL_SPI_Init() and when the state is HAL_SPI_STATE_RESET
all callbacks are set to the corresponding weak functions:
examples HAL_SPI_MasterTxCpltCallback(), HAL_SPI_MasterRxCpltCallback().
Exception done for MspInit and MspDeInit functions that are
reset to the legacy weak functions in the HAL_SPI_Init()/ HAL_SPI_DeInit() only when
these callbacks are null (not registered beforehand).
If MspInit or MspDeInit are not null, the HAL_SPI_Init()/ HAL_SPI_DeInit()
keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state.
[..]
Callbacks can be registered/unregistered in HAL_SPI_STATE_READY state only.
Exception done MspInit/MspDeInit functions that can be registered/unregistered
in HAL_SPI_STATE_READY or HAL_SPI_STATE_RESET state,
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
Then, the user first registers the MspInit/MspDeInit user callbacks
using HAL_SPI_RegisterCallback() before calling HAL_SPI_DeInit()
or HAL_SPI_Init() function.
[..]
When the compilation define USE_HAL_PPP_REGISTER_CALLBACKS is set to 0 or
not defined, the callback registering feature is not available
and weak (surcharged) callbacks are used.
[..]
Using the HAL it is not possible to reach all supported SPI frequency with the different SPI Modes,
the following table resume the max SPI frequency reached with data size 8bits/16bits,
according to frequency of the APBx Peripheral Clock (fPCLK) used by the SPI instance.
@endverbatim
Additional table :
DataSize = SPI_DATASIZE_8BIT:
+----------------------------------------------------------------------------------------------+
| | | 2Lines Fullduplex | 2Lines RxOnly | 1Line |
| Process | Transfer mode |---------------------|----------------------|----------------------|
| | | Master | Slave | Master | Slave | Master | Slave |
|==============================================================================================|
| T | Polling | Fpclk/2 | Fpclk/2 | NA | NA | NA | NA |
| X |----------------|----------|----------|-----------|----------|-----------|----------|
| / | Interrupt | Fpclk/4 | Fpclk/8 | NA | NA | NA | NA |
| R |----------------|----------|----------|-----------|----------|-----------|----------|
| X | DMA | Fpclk/2 | Fpclk/2 | NA | NA | NA | NA |
|=========|================|==========|==========|===========|==========|===========|==========|
| | Polling | Fpclk/2 | Fpclk/2 | Fpclk/64 | Fpclk/2 | Fpclk/64 | Fpclk/2 |
| |----------------|----------|----------|-----------|----------|-----------|----------|
| R | Interrupt | Fpclk/8 | Fpclk/8 | Fpclk/64 | Fpclk/2 | Fpclk/64 | Fpclk/2 |
| X |----------------|----------|----------|-----------|----------|-----------|----------|
| | DMA | Fpclk/2 | Fpclk/2 | Fpclk/64 | Fpclk/2 | Fpclk/128 | Fpclk/2 |
|=========|================|==========|==========|===========|==========|===========|==========|
| | Polling | Fpclk/2 | Fpclk/4 | NA | NA | Fpclk/2 | Fpclk/64 |
| |----------------|----------|----------|-----------|----------|-----------|----------|
| T | Interrupt | Fpclk/2 | Fpclk/4 | NA | NA | Fpclk/2 | Fpclk/64 |
| X |----------------|----------|----------|-----------|----------|-----------|----------|
| | DMA | Fpclk/2 | Fpclk/2 | NA | NA | Fpclk/2 | Fpclk/128|
+----------------------------------------------------------------------------------------------+
DataSize = SPI_DATASIZE_16BIT:
+----------------------------------------------------------------------------------------------+
| | | 2Lines Fullduplex | 2Lines RxOnly | 1Line |
| Process | Transfer mode |---------------------|----------------------|----------------------|
| | | Master | Slave | Master | Slave | Master | Slave |
|==============================================================================================|
| T | Polling | Fpclk/2 | Fpclk/2 | NA | NA | NA | NA |
| X |----------------|----------|----------|-----------|----------|-----------|----------|
| / | Interrupt | Fpclk/4 | Fpclk/4 | NA | NA | NA | NA |
| R |----------------|----------|----------|-----------|----------|-----------|----------|
| X | DMA | Fpclk/2 | Fpclk/2 | NA | NA | NA | NA |
|=========|================|==========|==========|===========|==========|===========|==========|
| | Polling | Fpclk/2 | Fpclk/2 | Fpclk/64 | Fpclk/2 | Fpclk/32 | Fpclk/2 |
| |----------------|----------|----------|-----------|----------|-----------|----------|
| R | Interrupt | Fpclk/4 | Fpclk/4 | Fpclk/64 | Fpclk/2 | Fpclk/64 | Fpclk/2 |
| X |----------------|----------|----------|-----------|----------|-----------|----------|
| | DMA | Fpclk/2 | Fpclk/2 | Fpclk/64 | Fpclk/2 | Fpclk/128 | Fpclk/2 |
|=========|================|==========|==========|===========|==========|===========|==========|
| | Polling | Fpclk/2 | Fpclk/2 | NA | NA | Fpclk/2 | Fpclk/32 |
| |----------------|----------|----------|-----------|----------|-----------|----------|
| T | Interrupt | Fpclk/2 | Fpclk/2 | NA | NA | Fpclk/2 | Fpclk/64 |
| X |----------------|----------|----------|-----------|----------|-----------|----------|
| | DMA | Fpclk/2 | Fpclk/2 | NA | NA | Fpclk/2 | Fpclk/128|
+----------------------------------------------------------------------------------------------+
@note The max SPI frequency depend on SPI data size (8bits, 16bits),
SPI mode(2 Lines fullduplex, 2 lines RxOnly, 1 line TX/RX) and Process mode (Polling, IT, DMA).
@note
(#) TX/RX processes are HAL_SPI_TransmitReceive(), HAL_SPI_TransmitReceive_IT() and
HAL_SPI_TransmitReceive_DMA()
(#) RX processes are HAL_SPI_Receive(), HAL_SPI_Receive_IT() and HAL_SPI_Receive_DMA()
(#) TX processes are HAL_SPI_Transmit(), HAL_SPI_Transmit_IT() and HAL_SPI_Transmit_DMA()
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @defgroup SPI SPI
* @brief SPI HAL module driver
* @{
*/
#ifdef HAL_SPI_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private defines -----------------------------------------------------------*/
#if (USE_SPI_CRC != 0U) && defined(SPI_CRC_ERROR_WORKAROUND_FEATURE)
/* CRC WORKAROUND FEATURE: Variable used to determine if device is impacted by implementation
* of workaround related to wrong CRC errors detection on SPI2. Conditions in which this workaround
* has to be applied, are:
* - STM32F101CDE/STM32F103CDE
* - Revision ID : Z
* - SPI2
* - In receive only mode, with CRC calculation enabled, at the end of the CRC reception,
* the software needs to check the CRCERR flag. If it is found set, read back the SPI_RXCRC:
* + If the value is 0, the complete data transfer is successful.
* + Otherwise, one or more errors have been detected during the data transfer by CPU or DMA.
* If CRCERR is found reset, the complete data transfer is considered successful.
*
* Check RevisionID value for identifying if Device is Rev Z (0x0001) in order to enable workaround for
* CRC errors wrongly detected
*/
/* Pb is that ES_STM32F10xxCDE also identify an issue in Debug registers access while not in Debug mode
* Revision ID information is only available in Debug mode, so Workaround could not be implemented
* to distinguish Rev Z devices (issue present) from more recent version (issue fixed).
* So, in case of Revision Z F101 or F103 devices, below define should be assigned to 1.
*/
#define USE_SPI_CRC_ERROR_WORKAROUND 0U
#endif /* USE_SPI_CRC */
/** @defgroup SPI_Private_Constants SPI Private Constants
* @{
*/
#define SPI_DEFAULT_TIMEOUT 100U
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup SPI_Private_Functions SPI Private Functions
* @{
*/
static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma);
static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma);
static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma);
static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma);
static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma);
static void SPI_DMAError(DMA_HandleTypeDef *hdma);
static void SPI_DMAAbortOnError(DMA_HandleTypeDef *hdma);
static void SPI_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
static void SPI_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
static HAL_StatusTypeDef SPI_WaitFlagStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, FlagStatus State,
uint32_t Timeout, uint32_t Tickstart);
static void SPI_TxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
static void SPI_TxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
static void SPI_RxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
static void SPI_RxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
static void SPI_2linesRxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
static void SPI_2linesTxISR_8BIT(struct __SPI_HandleTypeDef *hspi);
static void SPI_2linesTxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
static void SPI_2linesRxISR_16BIT(struct __SPI_HandleTypeDef *hspi);
#if (USE_SPI_CRC != 0U)
static void SPI_RxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi);
static void SPI_RxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi);
static void SPI_2linesRxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi);
static void SPI_2linesRxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi);
#endif /* USE_SPI_CRC */
static void SPI_AbortRx_ISR(SPI_HandleTypeDef *hspi);
static void SPI_AbortTx_ISR(SPI_HandleTypeDef *hspi);
static void SPI_CloseRxTx_ISR(SPI_HandleTypeDef *hspi);
static void SPI_CloseRx_ISR(SPI_HandleTypeDef *hspi);
static void SPI_CloseTx_ISR(SPI_HandleTypeDef *hspi);
static HAL_StatusTypeDef SPI_EndRxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart);
static HAL_StatusTypeDef SPI_EndRxTxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup SPI_Exported_Functions SPI Exported Functions
* @{
*/
/** @defgroup SPI_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..] This subsection provides a set of functions allowing to initialize and
de-initialize the SPIx peripheral:
(+) User must implement HAL_SPI_MspInit() function in which he configures
all related peripherals resources (CLOCK, GPIO, DMA, IT and NVIC ).
(+) Call the function HAL_SPI_Init() to configure the selected device with
the selected configuration:
(++) Mode
(++) Direction
(++) Data Size
(++) Clock Polarity and Phase
(++) NSS Management
(++) BaudRate Prescaler
(++) FirstBit
(++) TIMode
(++) CRC Calculation
(++) CRC Polynomial if CRC enabled
(+) Call the function HAL_SPI_DeInit() to restore the default configuration
of the selected SPIx peripheral.
@endverbatim
* @{
*/
/**
* @brief Initialize the SPI according to the specified parameters
* in the SPI_InitTypeDef and initialize the associated handle.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_Init(SPI_HandleTypeDef *hspi)
{
/* Check the SPI handle allocation */
if (hspi == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance));
assert_param(IS_SPI_MODE(hspi->Init.Mode));
assert_param(IS_SPI_DIRECTION(hspi->Init.Direction));
assert_param(IS_SPI_DATASIZE(hspi->Init.DataSize));
assert_param(IS_SPI_NSS(hspi->Init.NSS));
assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler));
assert_param(IS_SPI_FIRST_BIT(hspi->Init.FirstBit));
/* TI mode is not supported on this device.
TIMode parameter is mandatory equal to SPI_TIMODE_DISABLE */
assert_param(IS_SPI_TIMODE(hspi->Init.TIMode));
if (hspi->Init.TIMode == SPI_TIMODE_DISABLE)
{
assert_param(IS_SPI_CPOL(hspi->Init.CLKPolarity));
assert_param(IS_SPI_CPHA(hspi->Init.CLKPhase));
if (hspi->Init.Mode == SPI_MODE_MASTER)
{
assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler));
}
else
{
/* Baudrate prescaler not use in Motoraola Slave mode. force to default value */
hspi->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
}
}
else
{
assert_param(IS_SPI_BAUDRATE_PRESCALER(hspi->Init.BaudRatePrescaler));
/* Force polarity and phase to TI protocaol requirements */
hspi->Init.CLKPolarity = SPI_POLARITY_LOW;
hspi->Init.CLKPhase = SPI_PHASE_1EDGE;
}
#if (USE_SPI_CRC != 0U)
assert_param(IS_SPI_CRC_CALCULATION(hspi->Init.CRCCalculation));
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
assert_param(IS_SPI_CRC_POLYNOMIAL(hspi->Init.CRCPolynomial));
}
#else
hspi->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
#endif /* USE_SPI_CRC */
if (hspi->State == HAL_SPI_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hspi->Lock = HAL_UNLOCKED;
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
/* Init the SPI Callback settings */
hspi->TxCpltCallback = HAL_SPI_TxCpltCallback; /* Legacy weak TxCpltCallback */
hspi->RxCpltCallback = HAL_SPI_RxCpltCallback; /* Legacy weak RxCpltCallback */
hspi->TxRxCpltCallback = HAL_SPI_TxRxCpltCallback; /* Legacy weak TxRxCpltCallback */
hspi->TxHalfCpltCallback = HAL_SPI_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
hspi->RxHalfCpltCallback = HAL_SPI_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
hspi->TxRxHalfCpltCallback = HAL_SPI_TxRxHalfCpltCallback; /* Legacy weak TxRxHalfCpltCallback */
hspi->ErrorCallback = HAL_SPI_ErrorCallback; /* Legacy weak ErrorCallback */
hspi->AbortCpltCallback = HAL_SPI_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
if (hspi->MspInitCallback == NULL)
{
hspi->MspInitCallback = HAL_SPI_MspInit; /* Legacy weak MspInit */
}
/* Init the low level hardware : GPIO, CLOCK, NVIC... */
hspi->MspInitCallback(hspi);
#else
/* Init the low level hardware : GPIO, CLOCK, NVIC... */
HAL_SPI_MspInit(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
}
hspi->State = HAL_SPI_STATE_BUSY;
/* Disable the selected SPI peripheral */
__HAL_SPI_DISABLE(hspi);
/*----------------------- SPIx CR1 & CR2 Configuration ---------------------*/
/* Configure : SPI Mode, Communication Mode, Data size, Clock polarity and phase, NSS management,
Communication speed, First bit and CRC calculation state */
WRITE_REG(hspi->Instance->CR1, ((hspi->Init.Mode & (SPI_CR1_MSTR | SPI_CR1_SSI)) |
(hspi->Init.Direction & (SPI_CR1_RXONLY | SPI_CR1_BIDIMODE)) |
(hspi->Init.DataSize & SPI_CR1_DFF) |
(hspi->Init.CLKPolarity & SPI_CR1_CPOL) |
(hspi->Init.CLKPhase & SPI_CR1_CPHA) |
(hspi->Init.NSS & SPI_CR1_SSM) |
(hspi->Init.BaudRatePrescaler & SPI_CR1_BR_Msk) |
(hspi->Init.FirstBit & SPI_CR1_LSBFIRST) |
(hspi->Init.CRCCalculation & SPI_CR1_CRCEN)));
/* Configure : NSS management */
WRITE_REG(hspi->Instance->CR2, ((hspi->Init.NSS >> 16U) & SPI_CR2_SSOE));
#if (USE_SPI_CRC != 0U)
/*---------------------------- SPIx CRCPOLY Configuration ------------------*/
/* Configure : CRC Polynomial */
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
WRITE_REG(hspi->Instance->CRCPR, (hspi->Init.CRCPolynomial & SPI_CRCPR_CRCPOLY_Msk));
}
#endif /* USE_SPI_CRC */
#if defined(SPI_I2SCFGR_I2SMOD)
/* Activate the SPI mode (Make sure that I2SMOD bit in I2SCFGR register is reset) */
CLEAR_BIT(hspi->Instance->I2SCFGR, SPI_I2SCFGR_I2SMOD);
#endif /* SPI_I2SCFGR_I2SMOD */
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->State = HAL_SPI_STATE_READY;
return HAL_OK;
}
/**
* @brief De-Initialize the SPI peripheral.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_DeInit(SPI_HandleTypeDef *hspi)
{
/* Check the SPI handle allocation */
if (hspi == NULL)
{
return HAL_ERROR;
}
/* Check SPI Instance parameter */
assert_param(IS_SPI_ALL_INSTANCE(hspi->Instance));
hspi->State = HAL_SPI_STATE_BUSY;
/* Disable the SPI Peripheral Clock */
__HAL_SPI_DISABLE(hspi);
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
if (hspi->MspDeInitCallback == NULL)
{
hspi->MspDeInitCallback = HAL_SPI_MspDeInit; /* Legacy weak MspDeInit */
}
/* DeInit the low level hardware: GPIO, CLOCK, NVIC... */
hspi->MspDeInitCallback(hspi);
#else
/* DeInit the low level hardware: GPIO, CLOCK, NVIC... */
HAL_SPI_MspDeInit(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->State = HAL_SPI_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hspi);
return HAL_OK;
}
/**
* @brief Initialize the SPI MSP.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
__weak void HAL_SPI_MspInit(SPI_HandleTypeDef *hspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SPI_MspInit should be implemented in the user file
*/
}
/**
* @brief De-Initialize the SPI MSP.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
__weak void HAL_SPI_MspDeInit(SPI_HandleTypeDef *hspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SPI_MspDeInit should be implemented in the user file
*/
}
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
/**
* @brief Register a User SPI Callback
* To be used instead of the weak predefined callback
* @param hspi Pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for the specified SPI.
* @param CallbackID ID of the callback to be registered
* @param pCallback pointer to the Callback function
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_RegisterCallback(SPI_HandleTypeDef *hspi, HAL_SPI_CallbackIDTypeDef CallbackID,
pSPI_CallbackTypeDef pCallback)
{
HAL_StatusTypeDef status = HAL_OK;
if (pCallback == NULL)
{
/* Update the error code */
hspi->ErrorCode |= HAL_SPI_ERROR_INVALID_CALLBACK;
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hspi);
if (HAL_SPI_STATE_READY == hspi->State)
{
switch (CallbackID)
{
case HAL_SPI_TX_COMPLETE_CB_ID :
hspi->TxCpltCallback = pCallback;
break;
case HAL_SPI_RX_COMPLETE_CB_ID :
hspi->RxCpltCallback = pCallback;
break;
case HAL_SPI_TX_RX_COMPLETE_CB_ID :
hspi->TxRxCpltCallback = pCallback;
break;
case HAL_SPI_TX_HALF_COMPLETE_CB_ID :
hspi->TxHalfCpltCallback = pCallback;
break;
case HAL_SPI_RX_HALF_COMPLETE_CB_ID :
hspi->RxHalfCpltCallback = pCallback;
break;
case HAL_SPI_TX_RX_HALF_COMPLETE_CB_ID :
hspi->TxRxHalfCpltCallback = pCallback;
break;
case HAL_SPI_ERROR_CB_ID :
hspi->ErrorCallback = pCallback;
break;
case HAL_SPI_ABORT_CB_ID :
hspi->AbortCpltCallback = pCallback;
break;
case HAL_SPI_MSPINIT_CB_ID :
hspi->MspInitCallback = pCallback;
break;
case HAL_SPI_MSPDEINIT_CB_ID :
hspi->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK);
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (HAL_SPI_STATE_RESET == hspi->State)
{
switch (CallbackID)
{
case HAL_SPI_MSPINIT_CB_ID :
hspi->MspInitCallback = pCallback;
break;
case HAL_SPI_MSPDEINIT_CB_ID :
hspi->MspDeInitCallback = pCallback;
break;
default :
/* Update the error code */
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK);
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK);
/* Return error status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hspi);
return status;
}
/**
* @brief Unregister an SPI Callback
* SPI callback is redirected to the weak predefined callback
* @param hspi Pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for the specified SPI.
* @param CallbackID ID of the callback to be unregistered
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_UnRegisterCallback(SPI_HandleTypeDef *hspi, HAL_SPI_CallbackIDTypeDef CallbackID)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process locked */
__HAL_LOCK(hspi);
if (HAL_SPI_STATE_READY == hspi->State)
{
switch (CallbackID)
{
case HAL_SPI_TX_COMPLETE_CB_ID :
hspi->TxCpltCallback = HAL_SPI_TxCpltCallback; /* Legacy weak TxCpltCallback */
break;
case HAL_SPI_RX_COMPLETE_CB_ID :
hspi->RxCpltCallback = HAL_SPI_RxCpltCallback; /* Legacy weak RxCpltCallback */
break;
case HAL_SPI_TX_RX_COMPLETE_CB_ID :
hspi->TxRxCpltCallback = HAL_SPI_TxRxCpltCallback; /* Legacy weak TxRxCpltCallback */
break;
case HAL_SPI_TX_HALF_COMPLETE_CB_ID :
hspi->TxHalfCpltCallback = HAL_SPI_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */
break;
case HAL_SPI_RX_HALF_COMPLETE_CB_ID :
hspi->RxHalfCpltCallback = HAL_SPI_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */
break;
case HAL_SPI_TX_RX_HALF_COMPLETE_CB_ID :
hspi->TxRxHalfCpltCallback = HAL_SPI_TxRxHalfCpltCallback; /* Legacy weak TxRxHalfCpltCallback */
break;
case HAL_SPI_ERROR_CB_ID :
hspi->ErrorCallback = HAL_SPI_ErrorCallback; /* Legacy weak ErrorCallback */
break;
case HAL_SPI_ABORT_CB_ID :
hspi->AbortCpltCallback = HAL_SPI_AbortCpltCallback; /* Legacy weak AbortCpltCallback */
break;
case HAL_SPI_MSPINIT_CB_ID :
hspi->MspInitCallback = HAL_SPI_MspInit; /* Legacy weak MspInit */
break;
case HAL_SPI_MSPDEINIT_CB_ID :
hspi->MspDeInitCallback = HAL_SPI_MspDeInit; /* Legacy weak MspDeInit */
break;
default :
/* Update the error code */
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK);
/* Return error status */
status = HAL_ERROR;
break;
}
}
else if (HAL_SPI_STATE_RESET == hspi->State)
{
switch (CallbackID)
{
case HAL_SPI_MSPINIT_CB_ID :
hspi->MspInitCallback = HAL_SPI_MspInit; /* Legacy weak MspInit */
break;
case HAL_SPI_MSPDEINIT_CB_ID :
hspi->MspDeInitCallback = HAL_SPI_MspDeInit; /* Legacy weak MspDeInit */
break;
default :
/* Update the error code */
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK);
/* Return error status */
status = HAL_ERROR;
break;
}
}
else
{
/* Update the error code */
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_INVALID_CALLBACK);
/* Return error status */
status = HAL_ERROR;
}
/* Release Lock */
__HAL_UNLOCK(hspi);
return status;
}
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
/**
* @}
*/
/** @defgroup SPI_Exported_Functions_Group2 IO operation functions
* @brief Data transfers functions
*
@verbatim
==============================================================================
##### IO operation functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to manage the SPI
data transfers.
[..] The SPI supports master and slave mode :
(#) There are two modes of transfer:
(++) Blocking mode: The communication is performed in polling mode.
The HAL status of all data processing is returned by the same function
after finishing transfer.
(++) No-Blocking mode: The communication is performed using Interrupts
or DMA, These APIs return the HAL status.
The end of the data processing will be indicated through the
dedicated SPI IRQ when using Interrupt mode or the DMA IRQ when
using DMA mode.
The HAL_SPI_TxCpltCallback(), HAL_SPI_RxCpltCallback() and HAL_SPI_TxRxCpltCallback() user callbacks
will be executed respectively at the end of the transmit or Receive process
The HAL_SPI_ErrorCallback()user callback will be executed when a communication error is detected
(#) APIs provided for these 2 transfer modes (Blocking mode or Non blocking mode using either Interrupt or DMA)
exist for 1Line (simplex) and 2Lines (full duplex) modes.
@endverbatim
* @{
*/
/**
* @brief Transmit an amount of data in blocking mode.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param pData pointer to data buffer
* @param Size amount of data to be sent
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, const uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
uint32_t tickstart;
uint16_t initial_TxXferCount;
/* Check Direction parameter */
assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
initial_TxXferCount = Size;
if (hspi->State != HAL_SPI_STATE_READY)
{
return HAL_BUSY;
}
if ((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hspi);
/* Set the transaction information */
hspi->State = HAL_SPI_STATE_BUSY_TX;
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->pTxBuffPtr = (const uint8_t *)pData;
hspi->TxXferSize = Size;
hspi->TxXferCount = Size;
/*Init field not used in handle to zero */
hspi->pRxBuffPtr = (uint8_t *)NULL;
hspi->RxXferSize = 0U;
hspi->RxXferCount = 0U;
hspi->TxISR = NULL;
hspi->RxISR = NULL;
/* Configure communication direction : 1Line */
if (hspi->Init.Direction == SPI_DIRECTION_1LINE)
{
/* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */
__HAL_SPI_DISABLE(hspi);
SPI_1LINE_TX(hspi);
}
#if (USE_SPI_CRC != 0U)
/* Reset CRC Calculation */
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SPI_RESET_CRC(hspi);
}
#endif /* USE_SPI_CRC */
/* Check if the SPI is already enabled */
if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable SPI peripheral */
__HAL_SPI_ENABLE(hspi);
}
/* Transmit data in 16 Bit mode */
if (hspi->Init.DataSize == SPI_DATASIZE_16BIT)
{
if ((hspi->Init.Mode == SPI_MODE_SLAVE) || (initial_TxXferCount == 0x01U))
{
hspi->Instance->DR = *((const uint16_t *)hspi->pTxBuffPtr);
hspi->pTxBuffPtr += sizeof(uint16_t);
hspi->TxXferCount--;
}
/* Transmit data in 16 Bit mode */
while (hspi->TxXferCount > 0U)
{
/* Wait until TXE flag is set to send data */
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE))
{
hspi->Instance->DR = *((const uint16_t *)hspi->pTxBuffPtr);
hspi->pTxBuffPtr += sizeof(uint16_t);
hspi->TxXferCount--;
}
else
{
/* Timeout management */
if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U))
{
hspi->State = HAL_SPI_STATE_READY;
__HAL_UNLOCK(hspi);
return HAL_TIMEOUT;
}
}
}
}
/* Transmit data in 8 Bit mode */
else
{
if ((hspi->Init.Mode == SPI_MODE_SLAVE) || (initial_TxXferCount == 0x01U))
{
*((__IO uint8_t *)&hspi->Instance->DR) = *((const uint8_t *)hspi->pTxBuffPtr);
hspi->pTxBuffPtr += sizeof(uint8_t);
hspi->TxXferCount--;
}
while (hspi->TxXferCount > 0U)
{
/* Wait until TXE flag is set to send data */
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE))
{
*((__IO uint8_t *)&hspi->Instance->DR) = *((const uint8_t *)hspi->pTxBuffPtr);
hspi->pTxBuffPtr += sizeof(uint8_t);
hspi->TxXferCount--;
}
else
{
/* Timeout management */
if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U))
{
hspi->State = HAL_SPI_STATE_READY;
__HAL_UNLOCK(hspi);
return HAL_TIMEOUT;
}
}
}
}
#if (USE_SPI_CRC != 0U)
/* Enable CRC Transmission */
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
}
#endif /* USE_SPI_CRC */
/* Check the end of the transaction */
if (SPI_EndRxTxTransaction(hspi, Timeout, tickstart) != HAL_OK)
{
hspi->ErrorCode = HAL_SPI_ERROR_FLAG;
}
/* Clear overrun flag in 2 Lines communication mode because received is not read */
if (hspi->Init.Direction == SPI_DIRECTION_2LINES)
{
__HAL_SPI_CLEAR_OVRFLAG(hspi);
}
hspi->State = HAL_SPI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hspi);
if (hspi->ErrorCode != HAL_SPI_ERROR_NONE)
{
return HAL_ERROR;
}
else
{
return HAL_OK;
}
}
/**
* @brief Receive an amount of data in blocking mode.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param pData pointer to data buffer
* @param Size amount of data to be received
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
#if (USE_SPI_CRC != 0U)
__IO uint32_t tmpreg = 0U;
#endif /* USE_SPI_CRC */
uint32_t tickstart;
if (hspi->State != HAL_SPI_STATE_READY)
{
return HAL_BUSY;
}
if ((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES))
{
hspi->State = HAL_SPI_STATE_BUSY_RX;
/* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */
return HAL_SPI_TransmitReceive(hspi, pData, pData, Size, Timeout);
}
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
if ((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hspi);
/* Set the transaction information */
hspi->State = HAL_SPI_STATE_BUSY_RX;
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->pRxBuffPtr = (uint8_t *)pData;
hspi->RxXferSize = Size;
hspi->RxXferCount = Size;
/*Init field not used in handle to zero */
hspi->pTxBuffPtr = (uint8_t *)NULL;
hspi->TxXferSize = 0U;
hspi->TxXferCount = 0U;
hspi->RxISR = NULL;
hspi->TxISR = NULL;
#if (USE_SPI_CRC != 0U)
/* Reset CRC Calculation */
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SPI_RESET_CRC(hspi);
/* this is done to handle the CRCNEXT before the latest data */
hspi->RxXferCount--;
}
#endif /* USE_SPI_CRC */
/* Configure communication direction: 1Line */
if (hspi->Init.Direction == SPI_DIRECTION_1LINE)
{
/* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */
__HAL_SPI_DISABLE(hspi);
SPI_1LINE_RX(hspi);
}
/* Check if the SPI is already enabled */
if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable SPI peripheral */
__HAL_SPI_ENABLE(hspi);
}
/* Receive data in 8 Bit mode */
if (hspi->Init.DataSize == SPI_DATASIZE_8BIT)
{
/* Transfer loop */
while (hspi->RxXferCount > 0U)
{
/* Check the RXNE flag */
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE))
{
/* read the received data */
(* (uint8_t *)hspi->pRxBuffPtr) = *(__IO uint8_t *)&hspi->Instance->DR;
hspi->pRxBuffPtr += sizeof(uint8_t);
hspi->RxXferCount--;
}
else
{
/* Timeout management */
if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U))
{
hspi->State = HAL_SPI_STATE_READY;
__HAL_UNLOCK(hspi);
return HAL_TIMEOUT;
}
}
}
}
else
{
/* Transfer loop */
while (hspi->RxXferCount > 0U)
{
/* Check the RXNE flag */
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE))
{
*((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)hspi->Instance->DR;
hspi->pRxBuffPtr += sizeof(uint16_t);
hspi->RxXferCount--;
}
else
{
/* Timeout management */
if ((((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY)) || (Timeout == 0U))
{
hspi->State = HAL_SPI_STATE_READY;
__HAL_UNLOCK(hspi);
return HAL_TIMEOUT;
}
}
}
}
#if (USE_SPI_CRC != 0U)
/* Handle the CRC Transmission */
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
/* freeze the CRC before the latest data */
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
/* Check if CRCNEXT is well reset by hardware */
if (READ_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT))
{
/* Workaround to force CRCNEXT bit to zero in case of CRCNEXT is not reset automatically by hardware */
CLEAR_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
}
/* Read the latest data */
if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK)
{
/* the latest data has not been received */
__HAL_UNLOCK(hspi);
return HAL_TIMEOUT;
}
/* Receive last data in 16 Bit mode */
if (hspi->Init.DataSize == SPI_DATASIZE_16BIT)
{
*((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)hspi->Instance->DR;
}
/* Receive last data in 8 Bit mode */
else
{
(*(uint8_t *)hspi->pRxBuffPtr) = *(__IO uint8_t *)&hspi->Instance->DR;
}
/* Wait the CRC data */
if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
hspi->State = HAL_SPI_STATE_READY;
__HAL_UNLOCK(hspi);
return HAL_TIMEOUT;
}
/* Read CRC to Flush DR and RXNE flag */
tmpreg = READ_REG(hspi->Instance->DR);
/* To avoid GCC warning */
UNUSED(tmpreg);
}
#endif /* USE_SPI_CRC */
/* Check the end of the transaction */
if (SPI_EndRxTransaction(hspi, Timeout, tickstart) != HAL_OK)
{
hspi->ErrorCode = HAL_SPI_ERROR_FLAG;
}
#if (USE_SPI_CRC != 0U)
/* Check if CRC error occurred */
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
{
/* Check if CRC error is valid or not (workaround to be applied or not) */
if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
/* Reset CRC Calculation */
SPI_RESET_CRC(hspi);
}
else
{
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
}
}
#endif /* USE_SPI_CRC */
hspi->State = HAL_SPI_STATE_READY;
/* Unlock the process */
__HAL_UNLOCK(hspi);
if (hspi->ErrorCode != HAL_SPI_ERROR_NONE)
{
return HAL_ERROR;
}
else
{
return HAL_OK;
}
}
/**
* @brief Transmit and Receive an amount of data in blocking mode.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param pTxData pointer to transmission data buffer
* @param pRxData pointer to reception data buffer
* @param Size amount of data to be sent and received
* @param Timeout Timeout duration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, const uint8_t *pTxData, uint8_t *pRxData,
uint16_t Size, uint32_t Timeout)
{
uint16_t initial_TxXferCount;
uint32_t tmp_mode;
HAL_SPI_StateTypeDef tmp_state;
uint32_t tickstart;
#if (USE_SPI_CRC != 0U)
__IO uint32_t tmpreg = 0U;
#endif /* USE_SPI_CRC */
/* Variable used to alternate Rx and Tx during transfer */
uint32_t txallowed = 1U;
/* Check Direction parameter */
assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
/* Init temporary variables */
tmp_state = hspi->State;
tmp_mode = hspi->Init.Mode;
initial_TxXferCount = Size;
if (!((tmp_state == HAL_SPI_STATE_READY) || \
((tmp_mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) &&
(tmp_state == HAL_SPI_STATE_BUSY_RX))))
{
return HAL_BUSY;
}
if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hspi);
/* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */
if (hspi->State != HAL_SPI_STATE_BUSY_RX)
{
hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
}
/* Set the transaction information */
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->pRxBuffPtr = (uint8_t *)pRxData;
hspi->RxXferCount = Size;
hspi->RxXferSize = Size;
hspi->pTxBuffPtr = (const uint8_t *)pTxData;
hspi->TxXferCount = Size;
hspi->TxXferSize = Size;
/*Init field not used in handle to zero */
hspi->RxISR = NULL;
hspi->TxISR = NULL;
#if (USE_SPI_CRC != 0U)
/* Reset CRC Calculation */
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SPI_RESET_CRC(hspi);
}
#endif /* USE_SPI_CRC */
/* Check if the SPI is already enabled */
if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable SPI peripheral */
__HAL_SPI_ENABLE(hspi);
}
/* Transmit and Receive data in 16 Bit mode */
if (hspi->Init.DataSize == SPI_DATASIZE_16BIT)
{
if ((hspi->Init.Mode == SPI_MODE_SLAVE) || (initial_TxXferCount == 0x01U))
{
hspi->Instance->DR = *((const uint16_t *)hspi->pTxBuffPtr);
hspi->pTxBuffPtr += sizeof(uint16_t);
hspi->TxXferCount--;
#if (USE_SPI_CRC != 0U)
/* Enable CRC Transmission */
if ((hspi->TxXferCount == 0U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
{
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
}
#endif /* USE_SPI_CRC */
}
while ((hspi->TxXferCount > 0U) || (hspi->RxXferCount > 0U))
{
/* Check TXE flag */
if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE)) && (hspi->TxXferCount > 0U) && (txallowed == 1U))
{
hspi->Instance->DR = *((const uint16_t *)hspi->pTxBuffPtr);
hspi->pTxBuffPtr += sizeof(uint16_t);
hspi->TxXferCount--;
/* Next Data is a reception (Rx). Tx not allowed */
txallowed = 0U;
#if (USE_SPI_CRC != 0U)
/* Enable CRC Transmission */
if ((hspi->TxXferCount == 0U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
{
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
}
#endif /* USE_SPI_CRC */
}
/* Check RXNE flag */
if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE)) && (hspi->RxXferCount > 0U))
{
*((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)hspi->Instance->DR;
hspi->pRxBuffPtr += sizeof(uint16_t);
hspi->RxXferCount--;
/* Next Data is a Transmission (Tx). Tx is allowed */
txallowed = 1U;
}
if (((HAL_GetTick() - tickstart) >= Timeout) && (Timeout != HAL_MAX_DELAY))
{
hspi->State = HAL_SPI_STATE_READY;
__HAL_UNLOCK(hspi);
return HAL_TIMEOUT;
}
}
}
/* Transmit and Receive data in 8 Bit mode */
else
{
if ((hspi->Init.Mode == SPI_MODE_SLAVE) || (initial_TxXferCount == 0x01U))
{
*((__IO uint8_t *)&hspi->Instance->DR) = *((const uint8_t *)hspi->pTxBuffPtr);
hspi->pTxBuffPtr += sizeof(uint8_t);
hspi->TxXferCount--;
#if (USE_SPI_CRC != 0U)
/* Enable CRC Transmission */
if ((hspi->TxXferCount == 0U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
{
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
}
#endif /* USE_SPI_CRC */
}
while ((hspi->TxXferCount > 0U) || (hspi->RxXferCount > 0U))
{
/* Check TXE flag */
if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_TXE)) && (hspi->TxXferCount > 0U) && (txallowed == 1U))
{
*(__IO uint8_t *)&hspi->Instance->DR = *((const uint8_t *)hspi->pTxBuffPtr);
hspi->pTxBuffPtr++;
hspi->TxXferCount--;
/* Next Data is a reception (Rx). Tx not allowed */
txallowed = 0U;
#if (USE_SPI_CRC != 0U)
/* Enable CRC Transmission */
if ((hspi->TxXferCount == 0U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
{
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
}
#endif /* USE_SPI_CRC */
}
/* Wait until RXNE flag is reset */
if ((__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_RXNE)) && (hspi->RxXferCount > 0U))
{
(*(uint8_t *)hspi->pRxBuffPtr) = hspi->Instance->DR;
hspi->pRxBuffPtr++;
hspi->RxXferCount--;
/* Next Data is a Transmission (Tx). Tx is allowed */
txallowed = 1U;
}
if ((((HAL_GetTick() - tickstart) >= Timeout) && ((Timeout != HAL_MAX_DELAY))) || (Timeout == 0U))
{
hspi->State = HAL_SPI_STATE_READY;
__HAL_UNLOCK(hspi);
return HAL_TIMEOUT;
}
}
}
#if (USE_SPI_CRC != 0U)
/* Read CRC from DR to close CRC calculation process */
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
/* Wait until TXE flag */
if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, Timeout, tickstart) != HAL_OK)
{
/* Error on the CRC reception */
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
hspi->State = HAL_SPI_STATE_READY;
__HAL_UNLOCK(hspi);
return HAL_TIMEOUT;
}
/* Read CRC */
tmpreg = READ_REG(hspi->Instance->DR);
/* To avoid GCC warning */
UNUSED(tmpreg);
}
/* Check if CRC error occurred */
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
{
/* Check if CRC error is valid or not (workaround to be applied or not) */
if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
/* Reset CRC Calculation */
SPI_RESET_CRC(hspi);
__HAL_UNLOCK(hspi);
return HAL_ERROR;
}
else
{
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
}
}
#endif /* USE_SPI_CRC */
/* Check the end of the transaction */
if (SPI_EndRxTxTransaction(hspi, Timeout, tickstart) != HAL_OK)
{
hspi->ErrorCode = HAL_SPI_ERROR_FLAG;
__HAL_UNLOCK(hspi);
return HAL_ERROR;
}
/* Clear overrun flag in 2 Lines communication mode because received is not read */
if (hspi->Init.Direction == SPI_DIRECTION_2LINES)
{
__HAL_SPI_CLEAR_OVRFLAG(hspi);
}
hspi->State = HAL_SPI_STATE_READY;
/* Unlock the process */
__HAL_UNLOCK(hspi);
if (hspi->ErrorCode != HAL_SPI_ERROR_NONE)
{
return HAL_ERROR;
}
else
{
return HAL_OK;
}
}
/**
* @brief Transmit an amount of data in non-blocking mode with Interrupt.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param pData pointer to data buffer
* @param Size amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_Transmit_IT(SPI_HandleTypeDef *hspi, const uint8_t *pData, uint16_t Size)
{
/* Check Direction parameter */
assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));
if ((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
if (hspi->State != HAL_SPI_STATE_READY)
{
return HAL_BUSY;
}
/* Process Locked */
__HAL_LOCK(hspi);
/* Set the transaction information */
hspi->State = HAL_SPI_STATE_BUSY_TX;
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->pTxBuffPtr = (const uint8_t *)pData;
hspi->TxXferSize = Size;
hspi->TxXferCount = Size;
/* Init field not used in handle to zero */
hspi->pRxBuffPtr = (uint8_t *)NULL;
hspi->RxXferSize = 0U;
hspi->RxXferCount = 0U;
hspi->RxISR = NULL;
/* Set the function for IT treatment */
if (hspi->Init.DataSize > SPI_DATASIZE_8BIT)
{
hspi->TxISR = SPI_TxISR_16BIT;
}
else
{
hspi->TxISR = SPI_TxISR_8BIT;
}
/* Configure communication direction : 1Line */
if (hspi->Init.Direction == SPI_DIRECTION_1LINE)
{
/* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */
__HAL_SPI_DISABLE(hspi);
SPI_1LINE_TX(hspi);
}
#if (USE_SPI_CRC != 0U)
/* Reset CRC Calculation */
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SPI_RESET_CRC(hspi);
}
#endif /* USE_SPI_CRC */
/* Check if the SPI is already enabled */
if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable SPI peripheral */
__HAL_SPI_ENABLE(hspi);
}
/* Process Unlocked */
__HAL_UNLOCK(hspi);
/* Enable TXE and ERR interrupt */
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_ERR));
return HAL_OK;
}
/**
* @brief Receive an amount of data in non-blocking mode with Interrupt.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param pData pointer to data buffer
* @param Size amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_Receive_IT(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
{
if (hspi->State != HAL_SPI_STATE_READY)
{
return HAL_BUSY;
}
if ((hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->Init.Mode == SPI_MODE_MASTER))
{
hspi->State = HAL_SPI_STATE_BUSY_RX;
/* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */
return HAL_SPI_TransmitReceive_IT(hspi, pData, pData, Size);
}
if ((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hspi);
/* Set the transaction information */
hspi->State = HAL_SPI_STATE_BUSY_RX;
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->pRxBuffPtr = (uint8_t *)pData;
hspi->RxXferSize = Size;
hspi->RxXferCount = Size;
/* Init field not used in handle to zero */
hspi->pTxBuffPtr = (uint8_t *)NULL;
hspi->TxXferSize = 0U;
hspi->TxXferCount = 0U;
hspi->TxISR = NULL;
/* Set the function for IT treatment */
if (hspi->Init.DataSize > SPI_DATASIZE_8BIT)
{
hspi->RxISR = SPI_RxISR_16BIT;
}
else
{
hspi->RxISR = SPI_RxISR_8BIT;
}
/* Configure communication direction : 1Line */
if (hspi->Init.Direction == SPI_DIRECTION_1LINE)
{
/* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */
__HAL_SPI_DISABLE(hspi);
SPI_1LINE_RX(hspi);
}
#if (USE_SPI_CRC != 0U)
/* Reset CRC Calculation */
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SPI_RESET_CRC(hspi);
}
#endif /* USE_SPI_CRC */
/* Note : The SPI must be enabled after unlocking current process
to avoid the risk of SPI interrupt handle execution before current
process unlock */
/* Check if the SPI is already enabled */
if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable SPI peripheral */
__HAL_SPI_ENABLE(hspi);
}
/* Process Unlocked */
__HAL_UNLOCK(hspi);
/* Enable RXNE and ERR interrupt */
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
return HAL_OK;
}
/**
* @brief Transmit and Receive an amount of data in non-blocking mode with Interrupt.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param pTxData pointer to transmission data buffer
* @param pRxData pointer to reception data buffer
* @param Size amount of data to be sent and received
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_TransmitReceive_IT(SPI_HandleTypeDef *hspi, const uint8_t *pTxData, uint8_t *pRxData,
uint16_t Size)
{
uint32_t tmp_mode;
HAL_SPI_StateTypeDef tmp_state;
/* Check Direction parameter */
assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
/* Init temporary variables */
tmp_state = hspi->State;
tmp_mode = hspi->Init.Mode;
if (!((tmp_state == HAL_SPI_STATE_READY) || \
((tmp_mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) &&
(tmp_state == HAL_SPI_STATE_BUSY_RX))))
{
return HAL_BUSY;
}
if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hspi);
/* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */
if (hspi->State != HAL_SPI_STATE_BUSY_RX)
{
hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
}
/* Set the transaction information */
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->pTxBuffPtr = (const uint8_t *)pTxData;
hspi->TxXferSize = Size;
hspi->TxXferCount = Size;
hspi->pRxBuffPtr = (uint8_t *)pRxData;
hspi->RxXferSize = Size;
hspi->RxXferCount = Size;
/* Set the function for IT treatment */
if (hspi->Init.DataSize > SPI_DATASIZE_8BIT)
{
hspi->RxISR = SPI_2linesRxISR_16BIT;
hspi->TxISR = SPI_2linesTxISR_16BIT;
}
else
{
hspi->RxISR = SPI_2linesRxISR_8BIT;
hspi->TxISR = SPI_2linesTxISR_8BIT;
}
#if (USE_SPI_CRC != 0U)
/* Reset CRC Calculation */
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SPI_RESET_CRC(hspi);
}
#endif /* USE_SPI_CRC */
/* Check if the SPI is already enabled */
if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable SPI peripheral */
__HAL_SPI_ENABLE(hspi);
}
/* Process Unlocked */
__HAL_UNLOCK(hspi);
/* Enable TXE, RXNE and ERR interrupt */
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));
return HAL_OK;
}
/**
* @brief Transmit an amount of data in non-blocking mode with DMA.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param pData pointer to data buffer
* @param Size amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_Transmit_DMA(SPI_HandleTypeDef *hspi, const uint8_t *pData, uint16_t Size)
{
/* Check tx dma handle */
assert_param(IS_SPI_DMA_HANDLE(hspi->hdmatx));
/* Check Direction parameter */
assert_param(IS_SPI_DIRECTION_2LINES_OR_1LINE(hspi->Init.Direction));
if (hspi->State != HAL_SPI_STATE_READY)
{
return HAL_BUSY;
}
if ((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hspi);
/* Set the transaction information */
hspi->State = HAL_SPI_STATE_BUSY_TX;
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->pTxBuffPtr = (const uint8_t *)pData;
hspi->TxXferSize = Size;
hspi->TxXferCount = Size;
/* Init field not used in handle to zero */
hspi->pRxBuffPtr = (uint8_t *)NULL;
hspi->TxISR = NULL;
hspi->RxISR = NULL;
hspi->RxXferSize = 0U;
hspi->RxXferCount = 0U;
/* Configure communication direction : 1Line */
if (hspi->Init.Direction == SPI_DIRECTION_1LINE)
{
/* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */
__HAL_SPI_DISABLE(hspi);
SPI_1LINE_TX(hspi);
}
#if (USE_SPI_CRC != 0U)
/* Reset CRC Calculation */
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SPI_RESET_CRC(hspi);
}
#endif /* USE_SPI_CRC */
/* Set the SPI TxDMA Half transfer complete callback */
hspi->hdmatx->XferHalfCpltCallback = SPI_DMAHalfTransmitCplt;
/* Set the SPI TxDMA transfer complete callback */
hspi->hdmatx->XferCpltCallback = SPI_DMATransmitCplt;
/* Set the DMA error callback */
hspi->hdmatx->XferErrorCallback = SPI_DMAError;
/* Set the DMA AbortCpltCallback */
hspi->hdmatx->XferAbortCallback = NULL;
/* Enable the Tx DMA Stream/Channel */
if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR,
hspi->TxXferCount))
{
/* Update SPI error code */
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
/* Process Unlocked */
__HAL_UNLOCK(hspi);
return HAL_ERROR;
}
/* Check if the SPI is already enabled */
if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable SPI peripheral */
__HAL_SPI_ENABLE(hspi);
}
/* Process Unlocked */
__HAL_UNLOCK(hspi);
/* Enable the SPI Error Interrupt Bit */
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_ERR));
/* Enable Tx DMA Request */
SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN);
return HAL_OK;
}
/**
* @brief Receive an amount of data in non-blocking mode with DMA.
* @note In case of MASTER mode and SPI_DIRECTION_2LINES direction, hdmatx shall be defined.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param pData pointer to data buffer
* @note When the CRC feature is enabled the pData Length must be Size + 1.
* @param Size amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_Receive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size)
{
/* Check rx dma handle */
assert_param(IS_SPI_DMA_HANDLE(hspi->hdmarx));
if (hspi->State != HAL_SPI_STATE_READY)
{
return HAL_BUSY;
}
if ((hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->Init.Mode == SPI_MODE_MASTER))
{
hspi->State = HAL_SPI_STATE_BUSY_RX;
/* Check tx dma handle */
assert_param(IS_SPI_DMA_HANDLE(hspi->hdmatx));
/* Call transmit-receive function to send Dummy data on Tx line and generate clock on CLK line */
return HAL_SPI_TransmitReceive_DMA(hspi, pData, pData, Size);
}
if ((pData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* Process Locked */
__HAL_LOCK(hspi);
/* Set the transaction information */
hspi->State = HAL_SPI_STATE_BUSY_RX;
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->pRxBuffPtr = (uint8_t *)pData;
hspi->RxXferSize = Size;
hspi->RxXferCount = Size;
/*Init field not used in handle to zero */
hspi->RxISR = NULL;
hspi->TxISR = NULL;
hspi->TxXferSize = 0U;
hspi->TxXferCount = 0U;
/* Configure communication direction : 1Line */
if (hspi->Init.Direction == SPI_DIRECTION_1LINE)
{
/* Disable SPI Peripheral before set 1Line direction (BIDIOE bit) */
__HAL_SPI_DISABLE(hspi);
SPI_1LINE_RX(hspi);
}
#if (USE_SPI_CRC != 0U)
/* Reset CRC Calculation */
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SPI_RESET_CRC(hspi);
}
#endif /* USE_SPI_CRC */
/* Set the SPI RxDMA Half transfer complete callback */
hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt;
/* Set the SPI Rx DMA transfer complete callback */
hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt;
/* Set the DMA error callback */
hspi->hdmarx->XferErrorCallback = SPI_DMAError;
/* Set the DMA AbortCpltCallback */
hspi->hdmarx->XferAbortCallback = NULL;
/* Enable the Rx DMA Stream/Channel */
if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr,
hspi->RxXferCount))
{
/* Update SPI error code */
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
/* Process Unlocked */
__HAL_UNLOCK(hspi);
return HAL_ERROR;
}
/* Check if the SPI is already enabled */
if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable SPI peripheral */
__HAL_SPI_ENABLE(hspi);
}
/* Process Unlocked */
__HAL_UNLOCK(hspi);
/* Enable the SPI Error Interrupt Bit */
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_ERR));
/* Enable Rx DMA Request */
SET_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN);
return HAL_OK;
}
/**
* @brief Transmit and Receive an amount of data in non-blocking mode with DMA.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param pTxData pointer to transmission data buffer
* @param pRxData pointer to reception data buffer
* @note When the CRC feature is enabled the pRxData Length must be Size + 1
* @param Size amount of data to be sent
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA(SPI_HandleTypeDef *hspi, const uint8_t *pTxData, uint8_t *pRxData,
uint16_t Size)
{
uint32_t tmp_mode;
HAL_SPI_StateTypeDef tmp_state;
/* Check rx & tx dma handles */
assert_param(IS_SPI_DMA_HANDLE(hspi->hdmarx));
assert_param(IS_SPI_DMA_HANDLE(hspi->hdmatx));
/* Check Direction parameter */
assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
/* Init temporary variables */
tmp_state = hspi->State;
tmp_mode = hspi->Init.Mode;
if (!((tmp_state == HAL_SPI_STATE_READY) ||
((tmp_mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES) &&
(tmp_state == HAL_SPI_STATE_BUSY_RX))))
{
return HAL_BUSY;
}
if ((pTxData == NULL) || (pRxData == NULL) || (Size == 0U))
{
return HAL_ERROR;
}
/* Process locked */
__HAL_LOCK(hspi);
/* Don't overwrite in case of HAL_SPI_STATE_BUSY_RX */
if (hspi->State != HAL_SPI_STATE_BUSY_RX)
{
hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
}
/* Set the transaction information */
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->pTxBuffPtr = (const uint8_t *)pTxData;
hspi->TxXferSize = Size;
hspi->TxXferCount = Size;
hspi->pRxBuffPtr = (uint8_t *)pRxData;
hspi->RxXferSize = Size;
hspi->RxXferCount = Size;
/* Init field not used in handle to zero */
hspi->RxISR = NULL;
hspi->TxISR = NULL;
#if (USE_SPI_CRC != 0U)
/* Reset CRC Calculation */
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SPI_RESET_CRC(hspi);
}
#endif /* USE_SPI_CRC */
/* Check if we are in Rx only or in Rx/Tx Mode and configure the DMA transfer complete callback */
if (hspi->State == HAL_SPI_STATE_BUSY_RX)
{
/* Set the SPI Rx DMA Half transfer complete callback */
hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfReceiveCplt;
hspi->hdmarx->XferCpltCallback = SPI_DMAReceiveCplt;
}
else
{
/* Set the SPI Tx/Rx DMA Half transfer complete callback */
hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfTransmitReceiveCplt;
hspi->hdmarx->XferCpltCallback = SPI_DMATransmitReceiveCplt;
}
/* Set the DMA error callback */
hspi->hdmarx->XferErrorCallback = SPI_DMAError;
/* Set the DMA AbortCpltCallback */
hspi->hdmarx->XferAbortCallback = NULL;
/* Enable the Rx DMA Stream/Channel */
if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR, (uint32_t)hspi->pRxBuffPtr,
hspi->RxXferCount))
{
/* Update SPI error code */
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
/* Process Unlocked */
__HAL_UNLOCK(hspi);
return HAL_ERROR;
}
/* Enable Rx DMA Request */
SET_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN);
/* Set the SPI Tx DMA transfer complete callback as NULL because the communication closing
is performed in DMA reception complete callback */
hspi->hdmatx->XferHalfCpltCallback = NULL;
hspi->hdmatx->XferCpltCallback = NULL;
hspi->hdmatx->XferErrorCallback = NULL;
hspi->hdmatx->XferAbortCallback = NULL;
/* Enable the Tx DMA Stream/Channel */
if (HAL_OK != HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr, (uint32_t)&hspi->Instance->DR,
hspi->TxXferCount))
{
/* Update SPI error code */
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
/* Process Unlocked */
__HAL_UNLOCK(hspi);
return HAL_ERROR;
}
/* Check if the SPI is already enabled */
if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE)
{
/* Enable SPI peripheral */
__HAL_SPI_ENABLE(hspi);
}
/* Process Unlocked */
__HAL_UNLOCK(hspi);
/* Enable the SPI Error Interrupt Bit */
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_ERR));
/* Enable Tx DMA Request */
SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN);
return HAL_OK;
}
/**
* @brief Abort ongoing transfer (blocking mode).
* @param hspi SPI handle.
* @note This procedure could be used for aborting any ongoing transfer (Tx and Rx),
* started in Interrupt or DMA mode.
* This procedure performs following operations :
* - Disable SPI Interrupts (depending of transfer direction)
* - Disable the DMA transfer in the peripheral register (if enabled)
* - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
* - Set handle State to READY
* @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_Abort(SPI_HandleTypeDef *hspi)
{
HAL_StatusTypeDef errorcode;
__IO uint32_t count;
__IO uint32_t resetcount;
/* Initialized local variable */
errorcode = HAL_OK;
resetcount = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U);
count = resetcount;
/* Clear ERRIE interrupt to avoid error interrupts generation during Abort procedure */
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_ERRIE);
/* Disable TXEIE, RXNEIE and ERRIE(mode fault event, overrun error, TI frame error) interrupts */
if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXEIE))
{
hspi->TxISR = SPI_AbortTx_ISR;
/* Wait HAL_SPI_STATE_ABORT state */
do
{
if (count == 0U)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
break;
}
count--;
} while (hspi->State != HAL_SPI_STATE_ABORT);
/* Reset Timeout Counter */
count = resetcount;
}
if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE))
{
hspi->RxISR = SPI_AbortRx_ISR;
/* Wait HAL_SPI_STATE_ABORT state */
do
{
if (count == 0U)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
break;
}
count--;
} while (hspi->State != HAL_SPI_STATE_ABORT);
/* Reset Timeout Counter */
count = resetcount;
}
/* Disable the SPI DMA Tx request if enabled */
if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN))
{
/* Abort the SPI DMA Tx Stream/Channel : use blocking DMA Abort API (no callback) */
if (hspi->hdmatx != NULL)
{
/* Set the SPI DMA Abort callback :
will lead to call HAL_SPI_AbortCpltCallback() at end of DMA abort procedure */
hspi->hdmatx->XferAbortCallback = NULL;
/* Abort DMA Tx Handle linked to SPI Peripheral */
if (HAL_DMA_Abort(hspi->hdmatx) != HAL_OK)
{
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
}
/* Disable Tx DMA Request */
CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXDMAEN));
/* Wait until TXE flag is set */
do
{
if (count == 0U)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
break;
}
count--;
} while ((hspi->Instance->SR & SPI_FLAG_TXE) == RESET);
}
}
/* Disable the SPI DMA Rx request if enabled */
if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN))
{
/* Abort the SPI DMA Rx Stream/Channel : use blocking DMA Abort API (no callback) */
if (hspi->hdmarx != NULL)
{
/* Set the SPI DMA Abort callback :
will lead to call HAL_SPI_AbortCpltCallback() at end of DMA abort procedure */
hspi->hdmarx->XferAbortCallback = NULL;
/* Abort DMA Rx Handle linked to SPI Peripheral */
if (HAL_DMA_Abort(hspi->hdmarx) != HAL_OK)
{
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
}
/* Disable peripheral */
__HAL_SPI_DISABLE(hspi);
/* Disable Rx DMA Request */
CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_RXDMAEN));
}
}
/* Reset Tx and Rx transfer counters */
hspi->RxXferCount = 0U;
hspi->TxXferCount = 0U;
/* Check error during Abort procedure */
if (hspi->ErrorCode == HAL_SPI_ERROR_ABORT)
{
/* return HAL_Error in case of error during Abort procedure */
errorcode = HAL_ERROR;
}
else
{
/* Reset errorCode */
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
}
/* Clear the Error flags in the SR register */
__HAL_SPI_CLEAR_OVRFLAG(hspi);
/* Restore hspi->state to ready */
hspi->State = HAL_SPI_STATE_READY;
return errorcode;
}
/**
* @brief Abort ongoing transfer (Interrupt mode).
* @param hspi SPI handle.
* @note This procedure could be used for aborting any ongoing transfer (Tx and Rx),
* started in Interrupt or DMA mode.
* This procedure performs following operations :
* - Disable SPI Interrupts (depending of transfer direction)
* - Disable the DMA transfer in the peripheral register (if enabled)
* - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
* - Set handle State to READY
* - At abort completion, call user abort complete callback
* @note This procedure is executed in Interrupt mode, meaning that abort procedure could be
* considered as completed only when user abort complete callback is executed (not when exiting function).
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_Abort_IT(SPI_HandleTypeDef *hspi)
{
HAL_StatusTypeDef errorcode;
uint32_t abortcplt ;
__IO uint32_t count;
__IO uint32_t resetcount;
/* Initialized local variable */
errorcode = HAL_OK;
abortcplt = 1U;
resetcount = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U);
count = resetcount;
/* Clear ERRIE interrupt to avoid error interrupts generation during Abort procedure */
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_ERRIE);
/* Change Rx and Tx Irq Handler to Disable TXEIE, RXNEIE and ERRIE interrupts */
if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXEIE))
{
hspi->TxISR = SPI_AbortTx_ISR;
/* Wait HAL_SPI_STATE_ABORT state */
do
{
if (count == 0U)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
break;
}
count--;
} while (hspi->State != HAL_SPI_STATE_ABORT);
/* Reset Timeout Counter */
count = resetcount;
}
if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXNEIE))
{
hspi->RxISR = SPI_AbortRx_ISR;
/* Wait HAL_SPI_STATE_ABORT state */
do
{
if (count == 0U)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
break;
}
count--;
} while (hspi->State != HAL_SPI_STATE_ABORT);
/* Reset Timeout Counter */
count = resetcount;
}
/* If DMA Tx and/or DMA Rx Handles are associated to SPI Handle, DMA Abort complete callbacks should be initialised
before any call to DMA Abort functions */
/* DMA Tx Handle is valid */
if (hspi->hdmatx != NULL)
{
/* Set DMA Abort Complete callback if UART DMA Tx request if enabled.
Otherwise, set it to NULL */
if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN))
{
hspi->hdmatx->XferAbortCallback = SPI_DMATxAbortCallback;
}
else
{
hspi->hdmatx->XferAbortCallback = NULL;
}
}
/* DMA Rx Handle is valid */
if (hspi->hdmarx != NULL)
{
/* Set DMA Abort Complete callback if UART DMA Rx request if enabled.
Otherwise, set it to NULL */
if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN))
{
hspi->hdmarx->XferAbortCallback = SPI_DMARxAbortCallback;
}
else
{
hspi->hdmarx->XferAbortCallback = NULL;
}
}
/* Disable the SPI DMA Tx request if enabled */
if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_TXDMAEN))
{
/* Abort the SPI DMA Tx Stream/Channel */
if (hspi->hdmatx != NULL)
{
/* Abort DMA Tx Handle linked to SPI Peripheral */
if (HAL_DMA_Abort_IT(hspi->hdmatx) != HAL_OK)
{
hspi->hdmatx->XferAbortCallback = NULL;
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
}
else
{
abortcplt = 0U;
}
}
}
/* Disable the SPI DMA Rx request if enabled */
if (HAL_IS_BIT_SET(hspi->Instance->CR2, SPI_CR2_RXDMAEN))
{
/* Abort the SPI DMA Rx Stream/Channel */
if (hspi->hdmarx != NULL)
{
/* Abort DMA Rx Handle linked to SPI Peripheral */
if (HAL_DMA_Abort_IT(hspi->hdmarx) != HAL_OK)
{
hspi->hdmarx->XferAbortCallback = NULL;
hspi->ErrorCode = HAL_SPI_ERROR_ABORT;
}
else
{
abortcplt = 0U;
}
}
}
if (abortcplt == 1U)
{
/* Reset Tx and Rx transfer counters */
hspi->RxXferCount = 0U;
hspi->TxXferCount = 0U;
/* Check error during Abort procedure */
if (hspi->ErrorCode == HAL_SPI_ERROR_ABORT)
{
/* return HAL_Error in case of error during Abort procedure */
errorcode = HAL_ERROR;
}
else
{
/* Reset errorCode */
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
}
/* Clear the Error flags in the SR register */
__HAL_SPI_CLEAR_OVRFLAG(hspi);
/* Restore hspi->State to Ready */
hspi->State = HAL_SPI_STATE_READY;
/* As no DMA to be aborted, call directly user Abort complete callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->AbortCpltCallback(hspi);
#else
HAL_SPI_AbortCpltCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
}
return errorcode;
}
/**
* @brief Pause the DMA Transfer.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for the specified SPI module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_DMAPause(SPI_HandleTypeDef *hspi)
{
/* Process Locked */
__HAL_LOCK(hspi);
/* Disable the SPI DMA Tx & Rx requests */
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
/* Process Unlocked */
__HAL_UNLOCK(hspi);
return HAL_OK;
}
/**
* @brief Resume the DMA Transfer.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for the specified SPI module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_DMAResume(SPI_HandleTypeDef *hspi)
{
/* Process Locked */
__HAL_LOCK(hspi);
/* Enable the SPI DMA Tx & Rx requests */
SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
/* Process Unlocked */
__HAL_UNLOCK(hspi);
return HAL_OK;
}
/**
* @brief Stop the DMA Transfer.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for the specified SPI module.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_SPI_DMAStop(SPI_HandleTypeDef *hspi)
{
HAL_StatusTypeDef errorcode = HAL_OK;
/* The Lock is not implemented on this API to allow the user application
to call the HAL SPI API under callbacks HAL_SPI_TxCpltCallback() or HAL_SPI_RxCpltCallback() or
HAL_SPI_TxRxCpltCallback():
when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated
and the correspond call back is executed HAL_SPI_TxCpltCallback() or HAL_SPI_RxCpltCallback() or
HAL_SPI_TxRxCpltCallback()
*/
/* Abort the SPI DMA tx Stream/Channel */
if (hspi->hdmatx != NULL)
{
if (HAL_OK != HAL_DMA_Abort(hspi->hdmatx))
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
errorcode = HAL_ERROR;
}
}
/* Abort the SPI DMA rx Stream/Channel */
if (hspi->hdmarx != NULL)
{
if (HAL_OK != HAL_DMA_Abort(hspi->hdmarx))
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
errorcode = HAL_ERROR;
}
}
/* Disable the SPI DMA Tx & Rx requests */
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
hspi->State = HAL_SPI_STATE_READY;
return errorcode;
}
/**
* @brief Handle SPI interrupt request.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for the specified SPI module.
* @retval None
*/
void HAL_SPI_IRQHandler(SPI_HandleTypeDef *hspi)
{
uint32_t itsource = hspi->Instance->CR2;
uint32_t itflag = hspi->Instance->SR;
/* SPI in mode Receiver ----------------------------------------------------*/
if ((SPI_CHECK_FLAG(itflag, SPI_FLAG_OVR) == RESET) &&
(SPI_CHECK_FLAG(itflag, SPI_FLAG_RXNE) != RESET) && (SPI_CHECK_IT_SOURCE(itsource, SPI_IT_RXNE) != RESET))
{
hspi->RxISR(hspi);
return;
}
/* SPI in mode Transmitter -------------------------------------------------*/
if ((SPI_CHECK_FLAG(itflag, SPI_FLAG_TXE) != RESET) && (SPI_CHECK_IT_SOURCE(itsource, SPI_IT_TXE) != RESET))
{
hspi->TxISR(hspi);
return;
}
/* SPI in Error Treatment --------------------------------------------------*/
if (((SPI_CHECK_FLAG(itflag, SPI_FLAG_MODF) != RESET) || (SPI_CHECK_FLAG(itflag, SPI_FLAG_OVR) != RESET))
&& (SPI_CHECK_IT_SOURCE(itsource, SPI_IT_ERR) != RESET))
{
/* SPI Overrun error interrupt occurred ----------------------------------*/
if (SPI_CHECK_FLAG(itflag, SPI_FLAG_OVR) != RESET)
{
if (hspi->State != HAL_SPI_STATE_BUSY_TX)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_OVR);
__HAL_SPI_CLEAR_OVRFLAG(hspi);
}
else
{
__HAL_SPI_CLEAR_OVRFLAG(hspi);
return;
}
}
/* SPI Mode Fault error interrupt occurred -------------------------------*/
if (SPI_CHECK_FLAG(itflag, SPI_FLAG_MODF) != RESET)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_MODF);
__HAL_SPI_CLEAR_MODFFLAG(hspi);
}
/* SPI Frame error interrupt occurred ------------------------------------*/
if (hspi->ErrorCode != HAL_SPI_ERROR_NONE)
{
/* Disable all interrupts */
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE | SPI_IT_TXE | SPI_IT_ERR);
hspi->State = HAL_SPI_STATE_READY;
/* Disable the SPI DMA requests if enabled */
if ((HAL_IS_BIT_SET(itsource, SPI_CR2_TXDMAEN)) || (HAL_IS_BIT_SET(itsource, SPI_CR2_RXDMAEN)))
{
CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN));
/* Abort the SPI DMA Rx channel */
if (hspi->hdmarx != NULL)
{
/* Set the SPI DMA Abort callback :
will lead to call HAL_SPI_ErrorCallback() at end of DMA abort procedure */
hspi->hdmarx->XferAbortCallback = SPI_DMAAbortOnError;
if (HAL_OK != HAL_DMA_Abort_IT(hspi->hdmarx))
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
}
}
/* Abort the SPI DMA Tx channel */
if (hspi->hdmatx != NULL)
{
/* Set the SPI DMA Abort callback :
will lead to call HAL_SPI_ErrorCallback() at end of DMA abort procedure */
hspi->hdmatx->XferAbortCallback = SPI_DMAAbortOnError;
if (HAL_OK != HAL_DMA_Abort_IT(hspi->hdmatx))
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
}
}
}
else
{
/* Call user error callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->ErrorCallback(hspi);
#else
HAL_SPI_ErrorCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
}
}
return;
}
}
/**
* @brief Tx Transfer completed callback.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
__weak void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SPI_TxCpltCallback should be implemented in the user file
*/
}
/**
* @brief Rx Transfer completed callback.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
__weak void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SPI_RxCpltCallback should be implemented in the user file
*/
}
/**
* @brief Tx and Rx Transfer completed callback.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
__weak void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SPI_TxRxCpltCallback should be implemented in the user file
*/
}
/**
* @brief Tx Half Transfer completed callback.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
__weak void HAL_SPI_TxHalfCpltCallback(SPI_HandleTypeDef *hspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SPI_TxHalfCpltCallback should be implemented in the user file
*/
}
/**
* @brief Rx Half Transfer completed callback.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
__weak void HAL_SPI_RxHalfCpltCallback(SPI_HandleTypeDef *hspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SPI_RxHalfCpltCallback() should be implemented in the user file
*/
}
/**
* @brief Tx and Rx Half Transfer callback.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
__weak void HAL_SPI_TxRxHalfCpltCallback(SPI_HandleTypeDef *hspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SPI_TxRxHalfCpltCallback() should be implemented in the user file
*/
}
/**
* @brief SPI error callback.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
__weak void HAL_SPI_ErrorCallback(SPI_HandleTypeDef *hspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SPI_ErrorCallback should be implemented in the user file
*/
/* NOTE : The ErrorCode parameter in the hspi handle is updated by the SPI processes
and user can use HAL_SPI_GetError() API to check the latest error occurred
*/
}
/**
* @brief SPI Abort Complete callback.
* @param hspi SPI handle.
* @retval None
*/
__weak void HAL_SPI_AbortCpltCallback(SPI_HandleTypeDef *hspi)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hspi);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SPI_AbortCpltCallback can be implemented in the user file.
*/
}
/**
* @}
*/
/** @defgroup SPI_Exported_Functions_Group3 Peripheral State and Errors functions
* @brief SPI control functions
*
@verbatim
===============================================================================
##### Peripheral State and Errors functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the SPI.
(+) HAL_SPI_GetState() API can be helpful to check in run-time the state of the SPI peripheral
(+) HAL_SPI_GetError() check in run-time Errors occurring during communication
@endverbatim
* @{
*/
/**
* @brief Return the SPI handle state.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval SPI state
*/
HAL_SPI_StateTypeDef HAL_SPI_GetState(const SPI_HandleTypeDef *hspi)
{
/* Return SPI handle state */
return hspi->State;
}
/**
* @brief Return the SPI error code.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval SPI error code in bitmap format
*/
uint32_t HAL_SPI_GetError(const SPI_HandleTypeDef *hspi)
{
/* Return SPI ErrorCode */
return hspi->ErrorCode;
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup SPI_Private_Functions
* @brief Private functions
* @{
*/
/**
* @brief DMA SPI transmit process complete callback.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void SPI_DMATransmitCplt(DMA_HandleTypeDef *hdma)
{
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent);
uint32_t tickstart;
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
/* DMA Normal Mode */
if ((hdma->Instance->CCR & DMA_CCR_CIRC) != DMA_CCR_CIRC)
{
/* Disable ERR interrupt */
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR);
/* Disable Tx DMA Request */
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN);
/* Check the end of the transaction */
if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
}
/* Clear overrun flag in 2 Lines communication mode because received data is not read */
if (hspi->Init.Direction == SPI_DIRECTION_2LINES)
{
__HAL_SPI_CLEAR_OVRFLAG(hspi);
}
hspi->TxXferCount = 0U;
hspi->State = HAL_SPI_STATE_READY;
if (hspi->ErrorCode != HAL_SPI_ERROR_NONE)
{
/* Call user error callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->ErrorCallback(hspi);
#else
HAL_SPI_ErrorCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
return;
}
}
/* Call user Tx complete callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->TxCpltCallback(hspi);
#else
HAL_SPI_TxCpltCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
}
/**
* @brief DMA SPI receive process complete callback.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void SPI_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
{
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent);
uint32_t tickstart;
#if (USE_SPI_CRC != 0U)
__IO uint32_t tmpreg = 0U;
#endif /* USE_SPI_CRC */
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
/* DMA Normal Mode */
if ((hdma->Instance->CCR & DMA_CCR_CIRC) != DMA_CCR_CIRC)
{
/* Disable ERR interrupt */
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR);
#if (USE_SPI_CRC != 0U)
/* CRC handling */
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
/* Wait until RXNE flag */
if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
{
/* Error on the CRC reception */
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
}
/* Read CRC */
tmpreg = READ_REG(hspi->Instance->DR);
/* To avoid GCC warning */
UNUSED(tmpreg);
}
#endif /* USE_SPI_CRC */
/* Check if we are in Master RX 2 line mode */
if ((hspi->Init.Direction == SPI_DIRECTION_2LINES) && (hspi->Init.Mode == SPI_MODE_MASTER))
{
/* Disable Rx/Tx DMA Request (done by default to handle the case master rx direction 2 lines) */
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
}
else
{
/* Normal case */
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN);
}
/* Check the end of the transaction */
if (SPI_EndRxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
{
hspi->ErrorCode = HAL_SPI_ERROR_FLAG;
}
hspi->RxXferCount = 0U;
hspi->State = HAL_SPI_STATE_READY;
#if (USE_SPI_CRC != 0U)
/* Check if CRC error occurred */
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
{
/* Check if CRC error is valid or not (workaround to be applied or not) */
if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
/* Reset CRC Calculation */
SPI_RESET_CRC(hspi);
}
else
{
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
}
}
#endif /* USE_SPI_CRC */
if (hspi->ErrorCode != HAL_SPI_ERROR_NONE)
{
/* Call user error callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->ErrorCallback(hspi);
#else
HAL_SPI_ErrorCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
return;
}
}
/* Call user Rx complete callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->RxCpltCallback(hspi);
#else
HAL_SPI_RxCpltCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
}
/**
* @brief DMA SPI transmit receive process complete callback.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma)
{
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent);
uint32_t tickstart;
#if (USE_SPI_CRC != 0U)
__IO uint32_t tmpreg = 0U;
#endif /* USE_SPI_CRC */
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
/* DMA Normal Mode */
if ((hdma->Instance->CCR & DMA_CCR_CIRC) != DMA_CCR_CIRC)
{
/* Disable ERR interrupt */
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR);
#if (USE_SPI_CRC != 0U)
/* CRC handling */
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
/* Wait the CRC data */
if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, SET, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
}
/* Read CRC to Flush DR and RXNE flag */
tmpreg = READ_REG(hspi->Instance->DR);
/* To avoid GCC warning */
UNUSED(tmpreg);
}
#endif /* USE_SPI_CRC */
/* Check the end of the transaction */
if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
}
/* Disable Rx/Tx DMA Request */
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
hspi->TxXferCount = 0U;
hspi->RxXferCount = 0U;
hspi->State = HAL_SPI_STATE_READY;
#if (USE_SPI_CRC != 0U)
/* Check if CRC error occurred */
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
{
/* Check if CRC error is valid or not (workaround to be applied or not) */
if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
/* Reset CRC Calculation */
SPI_RESET_CRC(hspi);
}
else
{
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
}
}
#endif /* USE_SPI_CRC */
if (hspi->ErrorCode != HAL_SPI_ERROR_NONE)
{
/* Call user error callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->ErrorCallback(hspi);
#else
HAL_SPI_ErrorCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
return;
}
}
/* Call user TxRx complete callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->TxRxCpltCallback(hspi);
#else
HAL_SPI_TxRxCpltCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
}
/**
* @brief DMA SPI half transmit process complete callback.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void SPI_DMAHalfTransmitCplt(DMA_HandleTypeDef *hdma)
{
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent);
/* Call user Tx half complete callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->TxHalfCpltCallback(hspi);
#else
HAL_SPI_TxHalfCpltCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
}
/**
* @brief DMA SPI half receive process complete callback
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void SPI_DMAHalfReceiveCplt(DMA_HandleTypeDef *hdma)
{
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent);
/* Call user Rx half complete callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->RxHalfCpltCallback(hspi);
#else
HAL_SPI_RxHalfCpltCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
}
/**
* @brief DMA SPI half transmit receive process complete callback.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma)
{
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent);
/* Call user TxRx half complete callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->TxRxHalfCpltCallback(hspi);
#else
HAL_SPI_TxRxHalfCpltCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
}
/**
* @brief DMA SPI communication error callback.
* @param hdma pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA module.
* @retval None
*/
static void SPI_DMAError(DMA_HandleTypeDef *hdma)
{
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent);
/* Stop the disable DMA transfer on SPI side */
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN);
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
hspi->State = HAL_SPI_STATE_READY;
/* Call user error callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->ErrorCallback(hspi);
#else
HAL_SPI_ErrorCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
}
/**
* @brief DMA SPI communication abort callback, when initiated by HAL services on Error
* (To be called at end of DMA Abort procedure following error occurrence).
* @param hdma DMA handle.
* @retval None
*/
static void SPI_DMAAbortOnError(DMA_HandleTypeDef *hdma)
{
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent);
hspi->RxXferCount = 0U;
hspi->TxXferCount = 0U;
/* Call user error callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->ErrorCallback(hspi);
#else
HAL_SPI_ErrorCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
}
/**
* @brief DMA SPI Tx communication abort callback, when initiated by user
* (To be called at end of DMA Tx Abort procedure following user abort request).
* @note When this callback is executed, User Abort complete call back is called only if no
* Abort still ongoing for Rx DMA Handle.
* @param hdma DMA handle.
* @retval None
*/
static void SPI_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
{
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent);
__IO uint32_t count;
hspi->hdmatx->XferAbortCallback = NULL;
count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U);
/* Disable Tx DMA Request */
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN);
/* Wait until TXE flag is set */
do
{
if (count == 0U)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
break;
}
count--;
} while ((hspi->Instance->SR & SPI_FLAG_TXE) == RESET);
/* Check if an Abort process is still ongoing */
if (hspi->hdmarx != NULL)
{
if (hspi->hdmarx->XferAbortCallback != NULL)
{
return;
}
}
/* No Abort process still ongoing : All DMA Stream/Channel are aborted, call user Abort Complete callback */
hspi->RxXferCount = 0U;
hspi->TxXferCount = 0U;
/* Check no error during Abort procedure */
if (hspi->ErrorCode != HAL_SPI_ERROR_ABORT)
{
/* Reset errorCode */
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
}
/* Clear the Error flags in the SR register */
__HAL_SPI_CLEAR_OVRFLAG(hspi);
/* Restore hspi->State to Ready */
hspi->State = HAL_SPI_STATE_READY;
/* Call user Abort complete callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->AbortCpltCallback(hspi);
#else
HAL_SPI_AbortCpltCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
}
/**
* @brief DMA SPI Rx communication abort callback, when initiated by user
* (To be called at end of DMA Rx Abort procedure following user abort request).
* @note When this callback is executed, User Abort complete call back is called only if no
* Abort still ongoing for Tx DMA Handle.
* @param hdma DMA handle.
* @retval None
*/
static void SPI_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
{
SPI_HandleTypeDef *hspi = (SPI_HandleTypeDef *)(((DMA_HandleTypeDef *)hdma)->Parent);
/* Disable SPI Peripheral */
__HAL_SPI_DISABLE(hspi);
hspi->hdmarx->XferAbortCallback = NULL;
/* Disable Rx DMA Request */
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN);
/* Check Busy flag */
if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
}
/* Check if an Abort process is still ongoing */
if (hspi->hdmatx != NULL)
{
if (hspi->hdmatx->XferAbortCallback != NULL)
{
return;
}
}
/* No Abort process still ongoing : All DMA Stream/Channel are aborted, call user Abort Complete callback */
hspi->RxXferCount = 0U;
hspi->TxXferCount = 0U;
/* Check no error during Abort procedure */
if (hspi->ErrorCode != HAL_SPI_ERROR_ABORT)
{
/* Reset errorCode */
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
}
/* Clear the Error flags in the SR register */
__HAL_SPI_CLEAR_OVRFLAG(hspi);
/* Restore hspi->State to Ready */
hspi->State = HAL_SPI_STATE_READY;
/* Call user Abort complete callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->AbortCpltCallback(hspi);
#else
HAL_SPI_AbortCpltCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
}
/**
* @brief Rx 8-bit handler for Transmit and Receive in Interrupt mode.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_2linesRxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
{
/* Receive data in 8bit mode */
*hspi->pRxBuffPtr = *((__IO uint8_t *)&hspi->Instance->DR);
hspi->pRxBuffPtr++;
hspi->RxXferCount--;
/* Check end of the reception */
if (hspi->RxXferCount == 0U)
{
#if (USE_SPI_CRC != 0U)
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
hspi->RxISR = SPI_2linesRxISR_8BITCRC;
return;
}
#endif /* USE_SPI_CRC */
/* Disable RXNE and ERR interrupt */
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
if (hspi->TxXferCount == 0U)
{
SPI_CloseRxTx_ISR(hspi);
}
}
}
#if (USE_SPI_CRC != 0U)
/**
* @brief Rx 8-bit handler for Transmit and Receive in Interrupt mode.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_2linesRxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi)
{
__IO uint8_t *ptmpreg8;
__IO uint8_t tmpreg8 = 0;
/* Initialize the 8bit temporary pointer */
ptmpreg8 = (__IO uint8_t *)&hspi->Instance->DR;
/* Read 8bit CRC to flush Data Register */
tmpreg8 = *ptmpreg8;
/* To avoid GCC warning */
UNUSED(tmpreg8);
/* Disable RXNE and ERR interrupt */
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
if (hspi->TxXferCount == 0U)
{
SPI_CloseRxTx_ISR(hspi);
}
}
#endif /* USE_SPI_CRC */
/**
* @brief Tx 8-bit handler for Transmit and Receive in Interrupt mode.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_2linesTxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
{
*(__IO uint8_t *)&hspi->Instance->DR = *((const uint8_t *)hspi->pTxBuffPtr);
hspi->pTxBuffPtr++;
hspi->TxXferCount--;
/* Check the end of the transmission */
if (hspi->TxXferCount == 0U)
{
#if (USE_SPI_CRC != 0U)
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
/* Set CRC Next Bit to send CRC */
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
/* Disable TXE interrupt */
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE);
return;
}
#endif /* USE_SPI_CRC */
/* Disable TXE interrupt */
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE);
if (hspi->RxXferCount == 0U)
{
SPI_CloseRxTx_ISR(hspi);
}
}
}
/**
* @brief Rx 16-bit handler for Transmit and Receive in Interrupt mode.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_2linesRxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
{
/* Receive data in 16 Bit mode */
*((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)(hspi->Instance->DR);
hspi->pRxBuffPtr += sizeof(uint16_t);
hspi->RxXferCount--;
if (hspi->RxXferCount == 0U)
{
#if (USE_SPI_CRC != 0U)
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
hspi->RxISR = SPI_2linesRxISR_16BITCRC;
return;
}
#endif /* USE_SPI_CRC */
/* Disable RXNE interrupt */
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE);
if (hspi->TxXferCount == 0U)
{
SPI_CloseRxTx_ISR(hspi);
}
}
}
#if (USE_SPI_CRC != 0U)
/**
* @brief Manage the CRC 16-bit receive for Transmit and Receive in Interrupt mode.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_2linesRxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi)
{
__IO uint32_t tmpreg = 0U;
/* Read 16bit CRC to flush Data Register */
tmpreg = READ_REG(hspi->Instance->DR);
/* To avoid GCC warning */
UNUSED(tmpreg);
/* Disable RXNE interrupt */
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_RXNE);
SPI_CloseRxTx_ISR(hspi);
}
#endif /* USE_SPI_CRC */
/**
* @brief Tx 16-bit handler for Transmit and Receive in Interrupt mode.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_2linesTxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
{
/* Transmit data in 16 Bit mode */
hspi->Instance->DR = *((const uint16_t *)hspi->pTxBuffPtr);
hspi->pTxBuffPtr += sizeof(uint16_t);
hspi->TxXferCount--;
/* Enable CRC Transmission */
if (hspi->TxXferCount == 0U)
{
#if (USE_SPI_CRC != 0U)
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
/* Set CRC Next Bit to send CRC */
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
/* Disable TXE interrupt */
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE);
return;
}
#endif /* USE_SPI_CRC */
/* Disable TXE interrupt */
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_TXE);
if (hspi->RxXferCount == 0U)
{
SPI_CloseRxTx_ISR(hspi);
}
}
}
#if (USE_SPI_CRC != 0U)
/**
* @brief Manage the CRC 8-bit receive in Interrupt context.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_RxISR_8BITCRC(struct __SPI_HandleTypeDef *hspi)
{
__IO uint8_t *ptmpreg8;
__IO uint8_t tmpreg8 = 0;
/* Initialize the 8bit temporary pointer */
ptmpreg8 = (__IO uint8_t *)&hspi->Instance->DR;
/* Read 8bit CRC to flush Data Register */
tmpreg8 = *ptmpreg8;
/* To avoid GCC warning */
UNUSED(tmpreg8);
SPI_CloseRx_ISR(hspi);
}
#endif /* USE_SPI_CRC */
/**
* @brief Manage the receive 8-bit in Interrupt context.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_RxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
{
*hspi->pRxBuffPtr = (*(__IO uint8_t *)&hspi->Instance->DR);
hspi->pRxBuffPtr++;
hspi->RxXferCount--;
#if (USE_SPI_CRC != 0U)
/* Enable CRC Transmission */
if ((hspi->RxXferCount == 1U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
{
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
}
/* Check if CRCNEXT is well reset by hardware */
if (READ_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT))
{
/* Workaround to force CRCNEXT bit to zero in case of CRCNEXT is not reset automatically by hardware */
CLEAR_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
}
#endif /* USE_SPI_CRC */
if (hspi->RxXferCount == 0U)
{
#if (USE_SPI_CRC != 0U)
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
hspi->RxISR = SPI_RxISR_8BITCRC;
return;
}
#endif /* USE_SPI_CRC */
SPI_CloseRx_ISR(hspi);
}
}
#if (USE_SPI_CRC != 0U)
/**
* @brief Manage the CRC 16-bit receive in Interrupt context.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_RxISR_16BITCRC(struct __SPI_HandleTypeDef *hspi)
{
__IO uint32_t tmpreg = 0U;
/* Read 16bit CRC to flush Data Register */
tmpreg = READ_REG(hspi->Instance->DR);
/* To avoid GCC warning */
UNUSED(tmpreg);
/* Disable RXNE and ERR interrupt */
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
SPI_CloseRx_ISR(hspi);
}
#endif /* USE_SPI_CRC */
/**
* @brief Manage the 16-bit receive in Interrupt context.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_RxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
{
*((uint16_t *)hspi->pRxBuffPtr) = (uint16_t)(hspi->Instance->DR);
hspi->pRxBuffPtr += sizeof(uint16_t);
hspi->RxXferCount--;
#if (USE_SPI_CRC != 0U)
/* Enable CRC Transmission */
if ((hspi->RxXferCount == 1U) && (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE))
{
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
}
/* Check if CRCNEXT is well reset by hardware */
if (READ_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT))
{
/* Workaround to force CRCNEXT bit to zero in case of CRCNEXT is not reset automatically by hardware */
CLEAR_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
}
#endif /* USE_SPI_CRC */
if (hspi->RxXferCount == 0U)
{
#if (USE_SPI_CRC != 0U)
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
hspi->RxISR = SPI_RxISR_16BITCRC;
return;
}
#endif /* USE_SPI_CRC */
SPI_CloseRx_ISR(hspi);
}
}
/**
* @brief Handle the data 8-bit transmit in Interrupt mode.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_TxISR_8BIT(struct __SPI_HandleTypeDef *hspi)
{
*(__IO uint8_t *)&hspi->Instance->DR = *((const uint8_t *)hspi->pTxBuffPtr);
hspi->pTxBuffPtr++;
hspi->TxXferCount--;
if (hspi->TxXferCount == 0U)
{
#if (USE_SPI_CRC != 0U)
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
/* Enable CRC Transmission */
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
}
#endif /* USE_SPI_CRC */
SPI_CloseTx_ISR(hspi);
}
}
/**
* @brief Handle the data 16-bit transmit in Interrupt mode.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_TxISR_16BIT(struct __SPI_HandleTypeDef *hspi)
{
/* Transmit data in 16 Bit mode */
hspi->Instance->DR = *((const uint16_t *)hspi->pTxBuffPtr);
hspi->pTxBuffPtr += sizeof(uint16_t);
hspi->TxXferCount--;
if (hspi->TxXferCount == 0U)
{
#if (USE_SPI_CRC != 0U)
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
/* Enable CRC Transmission */
SET_BIT(hspi->Instance->CR1, SPI_CR1_CRCNEXT);
}
#endif /* USE_SPI_CRC */
SPI_CloseTx_ISR(hspi);
}
}
/**
* @brief Handle SPI Communication Timeout.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param Flag SPI flag to check
* @param State flag state to check
* @param Timeout Timeout duration
* @param Tickstart tick start value
* @retval HAL status
*/
static HAL_StatusTypeDef SPI_WaitFlagStateUntilTimeout(SPI_HandleTypeDef *hspi, uint32_t Flag, FlagStatus State,
uint32_t Timeout, uint32_t Tickstart)
{
__IO uint32_t count;
uint32_t tmp_timeout;
uint32_t tmp_tickstart;
/* Adjust Timeout value in case of end of transfer */
tmp_timeout = Timeout - (HAL_GetTick() - Tickstart);
tmp_tickstart = HAL_GetTick();
/* Calculate Timeout based on a software loop to avoid blocking issue if Systick is disabled */
count = tmp_timeout * ((SystemCoreClock * 32U) >> 20U);
while ((__HAL_SPI_GET_FLAG(hspi, Flag) ? SET : RESET) != State)
{
if (Timeout != HAL_MAX_DELAY)
{
if (((HAL_GetTick() - tmp_tickstart) >= tmp_timeout) || (tmp_timeout == 0U))
{
/* Disable the SPI and reset the CRC: the CRC value should be cleared
on both master and slave sides in order to resynchronize the master
and slave for their respective CRC calculation */
/* Disable TXE, RXNE and ERR interrupts for the interrupt process */
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_RXNE | SPI_IT_ERR));
if ((hspi->Init.Mode == SPI_MODE_MASTER) && ((hspi->Init.Direction == SPI_DIRECTION_1LINE)
|| (hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
{
/* Disable SPI peripheral */
__HAL_SPI_DISABLE(hspi);
}
/* Reset CRC Calculation */
if (hspi->Init.CRCCalculation == SPI_CRCCALCULATION_ENABLE)
{
SPI_RESET_CRC(hspi);
}
hspi->State = HAL_SPI_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hspi);
return HAL_TIMEOUT;
}
/* If Systick is disabled or not incremented, deactivate timeout to go in disable loop procedure */
if (count == 0U)
{
tmp_timeout = 0U;
}
count--;
}
}
return HAL_OK;
}
/**
* @brief Handle the check of the RX transaction complete.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @param Timeout Timeout duration
* @param Tickstart tick start value
* @retval HAL status
*/
static HAL_StatusTypeDef SPI_EndRxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart)
{
if ((hspi->Init.Mode == SPI_MODE_MASTER) && ((hspi->Init.Direction == SPI_DIRECTION_1LINE)
|| (hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY)))
{
/* Disable SPI peripheral */
__HAL_SPI_DISABLE(hspi);
}
if ((hspi->Init.Mode == SPI_MODE_MASTER) && (hspi->Init.Direction == SPI_DIRECTION_2LINES_RXONLY))
{
/* Wait the RXNE reset */
if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_RXNE, RESET, Timeout, Tickstart) != HAL_OK)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
return HAL_TIMEOUT;
}
}
else
{
/* Control the BSY flag */
if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, Timeout, Tickstart) != HAL_OK)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
/**
* @brief Handle the check of the RXTX or TX transaction complete.
* @param hspi SPI handle
* @param Timeout Timeout duration
* @param Tickstart tick start value
* @retval HAL status
*/
static HAL_StatusTypeDef SPI_EndRxTxTransaction(SPI_HandleTypeDef *hspi, uint32_t Timeout, uint32_t Tickstart)
{
/* Wait until TXE flag */
if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_TXE, SET, Timeout, Tickstart) != HAL_OK)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
return HAL_TIMEOUT;
}
/* Control the BSY flag */
if (SPI_WaitFlagStateUntilTimeout(hspi, SPI_FLAG_BSY, RESET, Timeout, Tickstart) != HAL_OK)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
return HAL_TIMEOUT;
}
return HAL_OK;
}
/**
* @brief Handle the end of the RXTX transaction.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_CloseRxTx_ISR(SPI_HandleTypeDef *hspi)
{
uint32_t tickstart;
__IO uint32_t count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U);
/* Init tickstart for timeout management */
tickstart = HAL_GetTick();
/* Disable ERR interrupt */
__HAL_SPI_DISABLE_IT(hspi, SPI_IT_ERR);
/* Wait until TXE flag is set */
do
{
if (count == 0U)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
break;
}
count--;
} while ((hspi->Instance->SR & SPI_FLAG_TXE) == RESET);
/* Check the end of the transaction */
if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
}
/* Clear overrun flag in 2 Lines communication mode because received is not read */
if (hspi->Init.Direction == SPI_DIRECTION_2LINES)
{
__HAL_SPI_CLEAR_OVRFLAG(hspi);
}
#if (USE_SPI_CRC != 0U)
/* Check if CRC error occurred */
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
{
/* Check if CRC error is valid or not (workaround to be applied or not) */
if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR)
{
hspi->State = HAL_SPI_STATE_READY;
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
/* Reset CRC Calculation */
SPI_RESET_CRC(hspi);
/* Call user error callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->ErrorCallback(hspi);
#else
HAL_SPI_ErrorCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
}
else
{
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
}
}
else
{
#endif /* USE_SPI_CRC */
if (hspi->ErrorCode == HAL_SPI_ERROR_NONE)
{
if (hspi->State == HAL_SPI_STATE_BUSY_RX)
{
hspi->State = HAL_SPI_STATE_READY;
/* Call user Rx complete callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->RxCpltCallback(hspi);
#else
HAL_SPI_RxCpltCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
}
else
{
hspi->State = HAL_SPI_STATE_READY;
/* Call user TxRx complete callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->TxRxCpltCallback(hspi);
#else
HAL_SPI_TxRxCpltCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
}
}
else
{
hspi->State = HAL_SPI_STATE_READY;
/* Call user error callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->ErrorCallback(hspi);
#else
HAL_SPI_ErrorCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
}
#if (USE_SPI_CRC != 0U)
}
#endif /* USE_SPI_CRC */
}
/**
* @brief Handle the end of the RX transaction.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_CloseRx_ISR(SPI_HandleTypeDef *hspi)
{
/* Disable RXNE and ERR interrupt */
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_RXNE | SPI_IT_ERR));
/* Check the end of the transaction */
if (SPI_EndRxTransaction(hspi, SPI_DEFAULT_TIMEOUT, HAL_GetTick()) != HAL_OK)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
}
/* Clear overrun flag in 2 Lines communication mode because received is not read */
if (hspi->Init.Direction == SPI_DIRECTION_2LINES)
{
__HAL_SPI_CLEAR_OVRFLAG(hspi);
}
hspi->State = HAL_SPI_STATE_READY;
#if (USE_SPI_CRC != 0U)
/* Check if CRC error occurred */
if (__HAL_SPI_GET_FLAG(hspi, SPI_FLAG_CRCERR) != RESET)
{
/* Check if CRC error is valid or not (workaround to be applied or not) */
if (SPI_ISCRCErrorValid(hspi) == SPI_VALID_CRC_ERROR)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_CRC);
/* Reset CRC Calculation */
SPI_RESET_CRC(hspi);
/* Call user error callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->ErrorCallback(hspi);
#else
HAL_SPI_ErrorCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
}
else
{
__HAL_SPI_CLEAR_CRCERRFLAG(hspi);
}
}
else
{
#endif /* USE_SPI_CRC */
if (hspi->ErrorCode == HAL_SPI_ERROR_NONE)
{
/* Call user Rx complete callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->RxCpltCallback(hspi);
#else
HAL_SPI_RxCpltCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
}
else
{
/* Call user error callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->ErrorCallback(hspi);
#else
HAL_SPI_ErrorCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
}
#if (USE_SPI_CRC != 0U)
}
#endif /* USE_SPI_CRC */
}
/**
* @brief Handle the end of the TX transaction.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_CloseTx_ISR(SPI_HandleTypeDef *hspi)
{
uint32_t tickstart;
__IO uint32_t count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U);
/* Init tickstart for timeout management*/
tickstart = HAL_GetTick();
/* Wait until TXE flag is set */
do
{
if (count == 0U)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
break;
}
count--;
} while ((hspi->Instance->SR & SPI_FLAG_TXE) == RESET);
/* Disable TXE and ERR interrupt */
__HAL_SPI_DISABLE_IT(hspi, (SPI_IT_TXE | SPI_IT_ERR));
/* Check the end of the transaction */
if (SPI_EndRxTxTransaction(hspi, SPI_DEFAULT_TIMEOUT, tickstart) != HAL_OK)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_FLAG);
}
/* Clear overrun flag in 2 Lines communication mode because received is not read */
if (hspi->Init.Direction == SPI_DIRECTION_2LINES)
{
__HAL_SPI_CLEAR_OVRFLAG(hspi);
}
hspi->State = HAL_SPI_STATE_READY;
if (hspi->ErrorCode != HAL_SPI_ERROR_NONE)
{
/* Call user error callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->ErrorCallback(hspi);
#else
HAL_SPI_ErrorCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
}
else
{
/* Call user Rx complete callback */
#if (USE_HAL_SPI_REGISTER_CALLBACKS == 1U)
hspi->TxCpltCallback(hspi);
#else
HAL_SPI_TxCpltCallback(hspi);
#endif /* USE_HAL_SPI_REGISTER_CALLBACKS */
}
}
/**
* @brief Handle abort a Rx transaction.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_AbortRx_ISR(SPI_HandleTypeDef *hspi)
{
__IO uint32_t tmpreg = 0U;
__IO uint32_t count = SPI_DEFAULT_TIMEOUT * (SystemCoreClock / 24U / 1000U);
/* Wait until TXE flag is set */
do
{
if (count == 0U)
{
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_ABORT);
break;
}
count--;
} while ((hspi->Instance->SR & SPI_FLAG_TXE) == RESET);
/* Disable SPI Peripheral */
__HAL_SPI_DISABLE(hspi);
/* Disable TXEIE, RXNEIE and ERRIE(mode fault event, overrun error, TI frame error) interrupts */
CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXEIE | SPI_CR2_RXNEIE | SPI_CR2_ERRIE));
/* Flush Data Register by a blank read */
tmpreg = READ_REG(hspi->Instance->DR);
/* To avoid GCC warning */
UNUSED(tmpreg);
hspi->State = HAL_SPI_STATE_ABORT;
}
/**
* @brief Handle abort a Tx or Rx/Tx transaction.
* @param hspi pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval None
*/
static void SPI_AbortTx_ISR(SPI_HandleTypeDef *hspi)
{
/* Disable TXEIE interrupt */
CLEAR_BIT(hspi->Instance->CR2, (SPI_CR2_TXEIE));
/* Disable SPI Peripheral */
__HAL_SPI_DISABLE(hspi);
hspi->State = HAL_SPI_STATE_ABORT;
}
#if (USE_SPI_CRC != 0U)
/**
* @brief Checks if encountered CRC error could be corresponding to wrongly detected errors
* according to SPI instance, Device type, and revision ID.
* @param hspi: pointer to a SPI_HandleTypeDef structure that contains
* the configuration information for SPI module.
* @retval CRC error validity (SPI_INVALID_CRC_ERROR or SPI_VALID_CRC_ERROR).
*/
uint8_t SPI_ISCRCErrorValid(SPI_HandleTypeDef *hspi)
{
#if defined(SPI_CRC_ERROR_WORKAROUND_FEATURE) && (USE_SPI_CRC_ERROR_WORKAROUND != 0U)
/* Check how to handle this CRC error (workaround to be applied or not) */
/* If CRC errors could be wrongly detected (issue 2.15.2 in STM32F10xxC/D/E silicon limitations ES
(DocID14732 Rev 13)) */
if (hspi->Instance == SPI2)
{
if (hspi->Instance->RXCRCR == 0U)
{
return (SPI_INVALID_CRC_ERROR);
}
}
#endif /* USE_SPI_CRC_ERROR_WORKAROUND */
/* Prevent unused argument(s) compilation warning */
UNUSED(hspi);
return (SPI_VALID_CRC_ERROR);
}
#endif /* USE_SPI_CRC */
/**
* @}
*/
#endif /* HAL_SPI_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/