//###########################################################################
//
// FILE:   Example_2833xAdcToDMA.c
//
// TITLE:  DSP2833x ADC To DMA
// ASSUMPTIONS:
//
//    This program requires the DSP2833x header files.
//
//    Make sure the CPU clock speed is properly defined in
//    DSP2833x_Examples.h before compiling this example.
//
//    Connect the signals to be converted to channel A0, A1, A2, and A3.
//
//    As supplied, this project is configured for "boot to SARAM"
//    operation.  The 2833x Boot Mode table is shown below.
//    For information on configuring the boot mode of an eZdsp,
//    please refer to the documentation included with the eZdsp,
//
//       $Boot_Table:
//
//         GPIO87   GPIO86     GPIO85   GPIO84
//          XA15     XA14       XA13     XA12
//           PU       PU         PU       PU
//        ==========================================
//            1        1          1        1    Jump to Flash
//            1        1          1        0    SCI-A boot
//            1        1          0        1    SPI-A boot
//            1        1          0        0    I2C-A boot
//            1        0          1        1    eCAN-A boot
//            1        0          1        0    McBSP-A boot
//            1        0          0        1    Jump to XINTF x16
//            1        0          0        0    Jump to XINTF x32
//            0        1          1        1    Jump to OTP
//            0        1          1        0    Parallel GPIO I/O boot
//            0        1          0        1    Parallel XINTF boot
//            0        1          0        0    Jump to SARAM	    <- "boot to SARAM"
//            0        0          1        1    Branch to check boot mode
//            0        0          1        0    Boot to flash, bypass ADC cal
//            0        0          0        1    Boot to SARAM, bypass ADC cal
//            0        0          0        0    Boot to SCI-A, bypass ADC cal
//                                              Boot_Table_End$
//
//
// DESCRIPTION:
//
// ADC is setup to convert 4 channels for each SOC received, with  total of 10 SOCs.
// Each SOC initiates 4 conversions.
// DMA is set up to capture the data on each SEQ1_INT.  DMA will re-sort   
// the data by channel sequentially, i.e. all channel0 data will be together
// all channel1 data will be together.
//
// Code should stop in local_DINTCH1_ISR when complete
//
// Watch Variables:
//      DMABuf1
//
//###########################################################################
//
// Original source by: M.P.
//
// $TI Release: DSP2833x/DSP2823x Header Files V1.20 $
// $Release Date: August 1, 2008 $
//###########################################################################

#include "DSP28x_Project.h"     // Device Headerfile and Examples Include File

// ADC start parameters
#if (CPU_FRQ_150MHZ)     // Default - 150 MHz SYSCLKOUT
  #define ADC_MODCLK 0x3 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3)   = 25.0 MHz
#endif
#if (CPU_FRQ_100MHZ)
  #define ADC_MODCLK 0x2 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 100/(2*2)   = 25.0 MHz
#endif
#define ADC_CKPS   0x1   // ADC module clock = HSPCLK/2*ADC_CKPS   = 25.0MHz/(1*2) = 12.5MHz
#define ADC_SHCLK  0xf   // S/H width in ADC module periods                        = 16 ADC clocks
#define AVG        1000  // Average sample limit
#define ZOFFSET    0x00  // Average Zero offset
#define BUF_SIZE   40    // Sample buffer size

// Global variable for this example
Uint16 j=0;

#pragma DATA_SECTION(DMABuf1,"DMARAML4");
volatile Uint16 DMABuf1[40];

volatile Uint16 *DMADest;
volatile Uint16 *DMASource;
interrupt void local_DINTCH1_ISR(void);

void main(void)
{
   Uint16 i;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
   InitSysCtrl();

// Specific clock setting for this example:
   EALLOW;
   SysCtrlRegs.HISPCP.all = ADC_MODCLK;	// HSPCLK = SYSCLKOUT/ADC_MODCLK
   EDIS;

// Step 2. Initialize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio();  // Skipped for this example

// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
   DINT;

// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
   InitPieCtrl();

// Disable CPU interrupts and clear all CPU interrupt flags:
   IER = 0x0000;
   IFR = 0x0000;

// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example.  This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
   InitPieVectTable();

// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
   EALLOW;	// Allow access to EALLOW protected registers
   PieVectTable.DINTCH1= &local_DINTCH1_ISR;
   EDIS;   // Disable access to EALLOW protected registers
      
   IER = M_INT7 ;	                             //Enable INT7 (7.1 DMA Ch1)
   EnableInterrupts();
   
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
   InitAdc();  // For this example, init the ADC

// Specific ADC setup for this example:
   AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK;
   AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS;
   AdcRegs.ADCTRL1.bit.SEQ_CASC = 0;        // 0 Non-Cascaded Mode
   AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0x1;
   AdcRegs.ADCTRL2.bit.RST_SEQ1 = 0x1;
   AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0;
   AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1;
   AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2;
   AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3;
   AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x0;
   AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x1;
   AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x2;
   AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x3;
   AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 3;   // Set up ADC to perform 4 conversions for every SOC
   
//Step 5. User specific code, enable interrupts:
  // Initialize DMA 
	DMAInitialize();

	// Clear Table
   for (i=0; i<BUF_SIZE; i++)
   {
     DMABuf1[i] = 0;
   }

	
// Configure DMA Channel
    DMADest   = &DMABuf1[0];              //Point DMA destination to the beginning of the array
	DMASource = &AdcMirror.ADCRESULT0;    //Point DMA source to ADC result register base
	DMACH1AddrConfig(DMADest,DMASource);
	DMACH1BurstConfig(3,1,10);
	DMACH1TransferConfig(9,1,0);
	DMACH1WrapConfig(1,0,0,1);
	DMACH1ModeConfig(DMA_SEQ1INT,PERINT_ENABLE,ONESHOT_DISABLE,CONT_DISABLE,SYNC_DISABLE,SYNC_SRC,
	                 OVRFLOW_DISABLE,SIXTEEN_BIT,CHINT_END,CHINT_ENABLE); 

 

 

	StartDMACH1();

   

   // Start SEQ1
   AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 0x1;
   for(i=0;i<10;i++){
    	for(j=0;j<1000;j++){}
        AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1;    //Normally ADC will be tied to ePWM, or timed routine
   }	                                     //For this example will re-start manually                   

}

// INT7.1
interrupt void local_DINTCH1_ISR(void)     // DMA Channel 1
{
  
  // To receive more interrupts from this PIE group, acknowledge this interrupt 
   PieCtrlRegs.PIEACK.all = PIEACK_GROUP7;

  // Next two lines for debug only to halt the processor here
  // Remove after inserting ISR Code
   asm ("      ESTOP0");
   for(;;);
}