// TI File $Revision: /main/9 $ // Checkin $Date: April 21, 2008 15:41:33 $ //########################################################################### // // FILE: Example_2833xEpwmDeadBand.c // // TITLE: Check PWM deadband generation // // ASSUMPTIONS: // // This program requires the DSP2833x header files. // // Monitor ePWM1 - ePWM3 on an Oscilloscope as described // below. // // EPWM1A is on GPIO0 // EPWM1B is on GPIO1 // // EPWM2A is on GPIO2 // EPWM2B is on GPIO3 // // EPWM3A is on GPIO4 // EPWM3B is on GPIO5 // // As supplied, this project is configured for "boot to SARAM" // operation. The 2833x Boot Mode table is shown below. // For information on configuring the boot mode of an eZdsp, // please refer to the documentation included with the eZdsp, // // $Boot_Table: // // GPIO87 GPIO86 GPIO85 GPIO84 // XA15 XA14 XA13 XA12 // PU PU PU PU // ========================================== // 1 1 1 1 Jump to Flash // 1 1 1 0 SCI-A boot // 1 1 0 1 SPI-A boot // 1 1 0 0 I2C-A boot // 1 0 1 1 eCAN-A boot // 1 0 1 0 McBSP-A boot // 1 0 0 1 Jump to XINTF x16 // 1 0 0 0 Jump to XINTF x32 // 0 1 1 1 Jump to OTP // 0 1 1 0 Parallel GPIO I/O boot // 0 1 0 1 Parallel XINTF boot // 0 1 0 0 Jump to SARAM <- "boot to SARAM" // 0 0 1 1 Branch to check boot mode // 0 0 1 0 Boot to flash, bypass ADC cal // 0 0 0 1 Boot to SARAM, bypass ADC cal // 0 0 0 0 Boot to SCI-A, bypass ADC cal // Boot_Table_End$ // // DESCRIPTION: // // This example configures ePWM1, ePWM2 and ePWM3 for: // - Count up/down // - Deadband // // 3 Examples are included: // * ePWM1: Active low PWMs // * ePWM2: Active low complementary PWMs // * ePWM3: Active high complementary PWMs // // Each ePWM is configured to interrupt on the 3rd zero event // when this happens the deadband is modified such that // 0 <= DB <= DB_MAX. That is, the deadband will move up and // down between 0 and the maximum value. // // // View the EPWM1A/B, EPWM2A/B and EPWM3A/B waveforms // via an oscilloscope // // //########################################################################### // $TI Release: DSP2833x/DSP2823x Header Files V1.20 $ // $Release Date: August 1, 2008 $ //########################################################################### #include "DSP28x_Project.h" // Device Headerfile and Examples Include File // Prototype statements for functions found within this file. void InitEPwm1Example(void); void InitEPwm2Example(void); void InitEPwm3Example(void); interrupt void epwm1_isr(void); interrupt void epwm2_isr(void); interrupt void epwm3_isr(void); // Global variables used in this example Uint32 EPwm1TimerIntCount; Uint32 EPwm2TimerIntCount; Uint32 EPwm3TimerIntCount; Uint16 EPwm1_DB_Direction; Uint16 EPwm2_DB_Direction; Uint16 EPwm3_DB_Direction; // Maximum Dead Band values #define EPWM1_MAX_DB 0x03FF #define EPWM2_MAX_DB 0x03FF #define EPWM3_MAX_DB 0x03FF #define EPWM1_MIN_DB 0 #define EPWM2_MIN_DB 0 #define EPWM3_MIN_DB 0 // To keep track of which way the Dead Band is moving #define DB_UP 1 #define DB_DOWN 0 void main(void) { // Step 1. Initialize System Control: // PLL, WatchDog, enable Peripheral Clocks // This example function is found in the DSP2833x_SysCtrl.c file. InitSysCtrl(); // Step 2. Initalize GPIO: // This example function is found in the DSP2833x_Gpio.c file and // illustrates how to set the GPIO to it's default state. // InitGpio(); // Skipped for this example // For this case just init GPIO pins for ePWM1, ePWM2, ePWM3 // These functions are in the DSP2833x_EPwm.c file InitEPwm1Gpio(); InitEPwm2Gpio(); InitEPwm3Gpio(); // Step 3. Clear all interrupts and initialize PIE vector table: // Disable CPU interrupts DINT; // Initialize the PIE control registers to their default state. // The default state is all PIE interrupts disabled and flags // are cleared. // This function is found in the DSP2833x_PieCtrl.c file. InitPieCtrl(); // Disable CPU interrupts and clear all CPU interrupt flags: IER = 0x0000; IFR = 0x0000; // Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR). // This will populate the entire table, even if the interrupt // is not used in this example. This is useful for debug purposes. // The shell ISR routines are found in DSP2833x_DefaultIsr.c. // This function is found in DSP2833x_PieVect.c. InitPieVectTable(); // Interrupts that are used in this example are re-mapped to // ISR functions found within this file. EALLOW; // This is needed to write to EALLOW protected registers PieVectTable.EPWM1_INT = &epwm1_isr; PieVectTable.EPWM2_INT = &epwm2_isr; PieVectTable.EPWM3_INT = &epwm3_isr; EDIS; // This is needed to disable write to EALLOW protected registers // Step 4. Initialize all the Device Peripherals: // This function is found in DSP2833x_InitPeripherals.c // InitPeripherals(); // Not required for this example EALLOW; SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0; EDIS; InitEPwm1Example(); InitEPwm2Example(); InitEPwm3Example(); EALLOW; SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1; EDIS; // Step 5. User specific code, enable interrupts // Initalize counters: EPwm1TimerIntCount = 0; EPwm2TimerIntCount = 0; EPwm3TimerIntCount = 0; // Enable CPU INT3 which is connected to EPWM1-3 INT: IER |= M_INT3; // Enable EPWM INTn in the PIE: Group 3 interrupt 1-3 PieCtrlRegs.PIEIER3.bit.INTx1 = 1; PieCtrlRegs.PIEIER3.bit.INTx2 = 1; PieCtrlRegs.PIEIER3.bit.INTx3 = 1; // Enable global Interrupts and higher priority real-time debug events: EINT; // Enable Global interrupt INTM ERTM; // Enable Global realtime interrupt DBGM // Step 6. IDLE loop. Just sit and loop forever (optional): for(;;) { asm(" NOP"); } } interrupt void epwm1_isr(void) { if(EPwm1_DB_Direction == DB_UP) { if(EPwm1Regs.DBFED < EPWM1_MAX_DB) { EPwm1Regs.DBFED++; EPwm1Regs.DBRED++; } else { EPwm1_DB_Direction = DB_DOWN; EPwm1Regs.DBFED--; EPwm1Regs.DBRED--; } } else { if(EPwm1Regs.DBFED == EPWM1_MIN_DB) { EPwm1_DB_Direction = DB_UP; EPwm1Regs.DBFED++; EPwm1Regs.DBRED++; } else { EPwm1Regs.DBFED--; EPwm1Regs.DBRED--; } } EPwm1TimerIntCount++; // Clear INT flag for this timer EPwm1Regs.ETCLR.bit.INT = 1; // Acknowledge this interrupt to receive more interrupts from group 3 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; } interrupt void epwm2_isr(void) { if(EPwm2_DB_Direction == DB_UP) { if(EPwm2Regs.DBFED < EPWM2_MAX_DB) { EPwm2Regs.DBFED++; EPwm2Regs.DBRED++; } else { EPwm2_DB_Direction = DB_DOWN; EPwm2Regs.DBFED--; EPwm2Regs.DBRED--; } } else { if(EPwm2Regs.DBFED == EPWM2_MIN_DB) { EPwm2_DB_Direction = DB_UP; EPwm2Regs.DBFED++; EPwm2Regs.DBRED++; } else { EPwm2Regs.DBFED--; EPwm2Regs.DBRED--; } } EPwm2TimerIntCount++; // Clear INT flag for this timer EPwm2Regs.ETCLR.bit.INT = 1; // Acknowledge this interrupt to receive more interrupts from group 3 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; } interrupt void epwm3_isr(void) { if(EPwm3_DB_Direction == DB_UP) { if(EPwm3Regs.DBFED < EPWM3_MAX_DB) { EPwm3Regs.DBFED++; EPwm3Regs.DBRED++; } else { EPwm3_DB_Direction = DB_DOWN; EPwm3Regs.DBFED--; EPwm3Regs.DBRED--; } } else { if(EPwm3Regs.DBFED == EPWM3_MIN_DB) { EPwm3_DB_Direction = DB_UP; EPwm3Regs.DBFED++; EPwm3Regs.DBRED++; } else { EPwm3Regs.DBFED--; EPwm3Regs.DBRED--; } } EPwm3TimerIntCount++; // Clear INT flag for this timer EPwm3Regs.ETCLR.bit.INT = 1; // Acknowledge this interrupt to receive more interrupts from group 3 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; } void InitEPwm1Example() { EPwm1Regs.TBPRD = 6000; // Set timer period EPwm1Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0 EPwm1Regs.TBCTR = 0x0000; // Clear counter // Setup TBCLK EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV4; // Clock ratio to SYSCLKOUT EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV4; EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; // Load registers every ZERO EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // Setup compare EPwm1Regs.CMPA.half.CMPA = 3000; // Set actions EPwm1Regs.AQCTLA.bit.CAU = AQ_SET; // Set PWM1A on Zero EPwm1Regs.AQCTLA.bit.CAD = AQ_CLEAR; EPwm1Regs.AQCTLB.bit.CAU = AQ_CLEAR; // Set PWM1A on Zero EPwm1Regs.AQCTLB.bit.CAD = AQ_SET; // Active Low PWMs - Setup Deadband EPwm1Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; EPwm1Regs.DBCTL.bit.POLSEL = DB_ACTV_LO; EPwm1Regs.DBCTL.bit.IN_MODE = DBA_ALL; EPwm1Regs.DBRED = EPWM1_MIN_DB; EPwm1Regs.DBFED = EPWM1_MIN_DB; EPwm1_DB_Direction = DB_UP; // Interrupt where we will change the Deadband EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event EPwm1Regs.ETSEL.bit.INTEN = 1; // Enable INT EPwm1Regs.ETPS.bit.INTPRD = ET_3RD; // Generate INT on 3rd event } void InitEPwm2Example() { EPwm2Regs.TBPRD = 6000; // Set timer period EPwm2Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0 EPwm2Regs.TBCTR = 0x0000; // Clear counter // Setup TBCLK EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up EPwm2Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV4; // Clock ratio to SYSCLKOUT EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV4; // Slow just to observe on the scope // Setup compare EPwm2Regs.CMPA.half.CMPA = 3000; // Set actions EPwm2Regs.AQCTLA.bit.CAU = AQ_SET; // Set PWM2A on Zero EPwm2Regs.AQCTLA.bit.CAD = AQ_CLEAR; EPwm2Regs.AQCTLB.bit.CAU = AQ_CLEAR; // Set PWM2A on Zero EPwm2Regs.AQCTLB.bit.CAD = AQ_SET; // Active Low complementary PWMs - setup the deadband EPwm2Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; EPwm2Regs.DBCTL.bit.POLSEL = DB_ACTV_LOC; EPwm2Regs.DBCTL.bit.IN_MODE = DBA_ALL; EPwm2Regs.DBRED = EPWM2_MIN_DB; EPwm2Regs.DBFED = EPWM2_MIN_DB; EPwm2_DB_Direction = DB_UP; // Interrupt where we will modify the deadband EPwm2Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event EPwm2Regs.ETSEL.bit.INTEN = 1; // Enable INT EPwm2Regs.ETPS.bit.INTPRD = ET_3RD; // Generate INT on 3rd event } void InitEPwm3Example() { EPwm3Regs.TBPRD = 6000; // Set timer period EPwm3Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0 EPwm3Regs.TBCTR = 0x0000; // Clear counter // Setup TBCLK EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up EPwm3Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading EPwm3Regs.TBCTL.bit.HSPCLKDIV = TB_DIV4; // Clock ratio to SYSCLKOUT EPwm3Regs.TBCTL.bit.CLKDIV = TB_DIV4; // Slow so we can observe on the scope // Setup compare EPwm3Regs.CMPA.half.CMPA = 3000; // Set actions EPwm3Regs.AQCTLA.bit.CAU = AQ_SET; // Set PWM3A on Zero EPwm3Regs.AQCTLA.bit.CAD = AQ_CLEAR; EPwm3Regs.AQCTLB.bit.CAU = AQ_CLEAR; // Set PWM3A on Zero EPwm3Regs.AQCTLB.bit.CAD = AQ_SET; // Active high complementary PWMs - Setup the deadband EPwm3Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE; EPwm3Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC; EPwm3Regs.DBCTL.bit.IN_MODE = DBA_ALL; EPwm3Regs.DBRED = EPWM3_MIN_DB; EPwm3Regs.DBFED = EPWM3_MIN_DB; EPwm3_DB_Direction = DB_UP; // Interrupt where we will change the deadband EPwm3Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event EPwm3Regs.ETSEL.bit.INTEN = 1; // Enable INT EPwm3Regs.ETPS.bit.INTPRD = ET_3RD; // Generate INT on 3rd event } //=========================================================================== // No more. //===========================================================================