init commit.

Проект каким он достался от Димы.
This commit is contained in:
2021-02-15 09:56:02 +03:00
commit b8a0477c5c
294 changed files with 72365 additions and 0 deletions

View File

@@ -0,0 +1,403 @@
//###########################################################################
//
// FILE: Example_2833xMCBSP_DLB_DMA.c
//
// TITLE: DSP2833x Device McBSP Digital Loop Back with DMA program
//
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
// DESCRIPTION:
//
// This program is a McBSP example that uses the internal loopback of
// the peripheral and utilizes the DMA to transfer data from one buffer
// to the McBSP, and then from the McBSP to another buffer.
//
// Initially, sdata[] is filled with values from 0x0000- 0x007F. The DMA
// moves the values in sdata[] one by one to the DXRx registers of the McBSP.
// These values are transmitted and subsequently received by the McBSP.
// Then, the DMA moves each data value to rdata[] as it is received by the McBSP.
//
// Three different serial word sizes can be tested.
//
// Before compiling this project:
// * Select the serial word size (8/16/32) by using
// the #define statements at the beginning of the code.
//
// The program loops forever after all values have been transferred to sdata.
// It is up to the user to stop the program.
//
//
// By default for the McBSP examples, the McBSP sample rate generator (SRG) input
// clock frequency is LSPCLK (150E6/4 or 100E6/4) assuming SYSCLKOUT = 150 MHz or
// 100 MHz respectively. If while testing, the SRG input frequency
// is changed, the #define MCBSP_SRG_FREQ (150E6/4 or 100E6/4) in the Mcbsp.c file must
// also be updated accordingly. This define is used to determine the Mcbsp initialization
// delay after the SRG is enabled, which must be at least 2 SRG clock cycles.
//
// Watch Variables:
// sdata
// rdata
//
//
//###########################################################################
// $TI Release: DSP2833x/DSP2823x Header Files V1.20 $
// $Release Date: August 1, 2008 $
//###########################################################################
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
// Choose a word size. Uncomment one of the following lines
#define WORD_SIZE 8 // Run a loopback test in 8-bit mode
//#define WORD_SIZE 16 // Run a loopback test in 16-bit mode
//#define WORD_SIZE 32 // Run a loopback test in 32-bit mode
// Prototype statements for functions found within this file.
interrupt void local_D_INTCH1_ISR(void);
interrupt void local_D_INTCH2_ISR(void);
void mcbsp_init_dlb(void);
void init_dma(void);
void init_dma_32(void);
void start_dma(void);
void error(void);
// Place sdata and rdata buffers in DMA-accessible RAM (L4 for this example)
#pragma DATA_SECTION(sdata, "DMARAML4")
#pragma DATA_SECTION(rdata, "DMARAML4")
Uint16 sdata[128]; // Sent Data
Uint16 rdata[128]; // Recieved Data
Uint16 data_size; // Word Length variable
void main(void)
{
Uint16 i;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// Setup only the GP I/O only for McBSP-A functionality
InitMcbspaGpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // Allow access to EALLOW protected registers
PieVectTable.DINTCH1= &local_D_INTCH1_ISR;
PieVectTable.DINTCH2= &local_D_INTCH2_ISR;
EDIS; // Disable access to EALLOW protected registers
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
// Step 5. User specific code, enable interrupts:
data_size = WORD_SIZE;
for (i=0; i<128; i++)
{
sdata[i] = i; // Fill sdata with values between 0 and 0x007F
rdata[i] = 0; // Initialize rdata to all 0x0000.
}
if (data_size == 32)
{
init_dma_32(); // DMA Initialization for 32-bit transfers
} else
{
init_dma(); // 1. When using DMA, initialize DMA with peripheral interrupts first.
}
start_dma();
mcbsp_init_dlb(); // 2. Then initialize and release peripheral (McBSP) from Reset.
// Enable interrupts required for this example
PieCtrlRegs.PIECTRL.bit.ENPIE = 1; // Enable the PIE block
PieCtrlRegs.PIEIER6.bit.INTx5=1; // Enable PIE Group 6, INT 5
PieCtrlRegs.PIEIER6.bit.INTx6=1; // Enable PIE Group 6, INT 6
PieCtrlRegs.PIEIER7.bit.INTx1 = 1; // Enable PIE Group 7, INT 1 (DMA CH1)
PieCtrlRegs.PIEIER7.bit.INTx2 = 1; // Enable PIE Group 7, INT 2 (DMA CH2)
IER=0x60; // Enable CPU INT groups 6 and 7
EINT; // Enable Global Interrupts
// Step 6. IDLE loop. Just sit and loop forever (optional):
for(;;);
}
// Step 7. Insert all local Interrupt Service Routines (ISRs) and functions here:
void error(void)
{
asm(" ESTOP0"); // Test failed!! Stop!
for (;;);
}
void mcbsp_init_dlb()
{
McbspaRegs.SPCR2.all=0x0000; // Reset FS generator, sample rate generator & transmitter
McbspaRegs.SPCR1.all=0x0000; // Reset Receiver, Right justify word
McbspaRegs.SPCR1.bit.DLB = 1; // Enable DLB mode. Comment out for non-DLB mode.
McbspaRegs.MFFINT.all=0x0; // Disable all interrupts
McbspaRegs.RCR2.all=0x0; // Single-phase frame, 1 word/frame, No companding (Receive)
McbspaRegs.RCR1.all=0x0;
McbspaRegs.XCR2.all=0x0; // Single-phase frame, 1 word/frame, No companding (Transmit)
McbspaRegs.XCR1.all=0x0;
McbspaRegs.SRGR2.bit.CLKSM = 1; // CLKSM=1 (If SCLKME=0, i/p clock to SRG is LSPCLK)
McbspaRegs.SRGR2.bit.FPER = 31; // FPER = 32 CLKG periods
McbspaRegs.SRGR1.bit.FWID = 0; // Frame Width = 1 CLKG period
McbspaRegs.SRGR1.bit.CLKGDV = 0; // CLKG frequency = LSPCLK/(CLKGDV+1)
McbspaRegs.PCR.bit.FSXM = 1; // FSX generated internally, FSR derived from an external source
McbspaRegs.PCR.bit.CLKXM = 1; // CLKX generated internally, CLKR derived from an external source
//*************** Initialize McBSP Data Length
if(data_size == 8) // Run a loopback test in 8-bit mode
{
InitMcbspa8bit();
}
if(data_size == 16) // Run a loopback test in 16-bit mode
{
InitMcbspa16bit();
}
if(data_size == 32) // Run a loopback test in 32-bit mode
{
InitMcbspa32bit();
}
//************* Enable Sample rate generator
McbspaRegs.SPCR2.bit.GRST=1; // Enable the sample rate generator
delay_loop(); // Wait at least 2 SRG clock cycles
McbspaRegs.SPCR2.bit.XRST=1; // Release TX from Reset
McbspaRegs.SPCR1.bit.RRST=1; // Release RX from Reset
McbspaRegs.SPCR2.bit.FRST=1; // Frame Sync Generator reset
}
// DMA Initialization for data size <= 16-bit
void init_dma()
{
EALLOW;
DmaRegs.DMACTRL.bit.HARDRESET = 1;
asm(" NOP"); // Only 1 NOP needed per Design
DmaRegs.CH1.MODE.bit.CHINTE = 0;
// Channel 1, McBSPA transmit
DmaRegs.CH1.BURST_SIZE.all = 0; // 1 word/burst
DmaRegs.CH1.SRC_BURST_STEP = 0; // no effect when using 1 word/burst
DmaRegs.CH1.DST_BURST_STEP = 0; // no effect when using 1 word/burst
DmaRegs.CH1.TRANSFER_SIZE = 127; // Interrupt every frame (127 bursts/transfer)
DmaRegs.CH1.SRC_TRANSFER_STEP = 1; // Move to next word in buffer after each word in a burst
DmaRegs.CH1.DST_TRANSFER_STEP = 0; // Don't move destination address
DmaRegs.CH1.SRC_ADDR_SHADOW = (Uint32) &sdata[0]; // Start address = buffer
DmaRegs.CH1.SRC_BEG_ADDR_SHADOW = (Uint32) &sdata[0]; // Not needed unless using wrap function
DmaRegs.CH1.DST_ADDR_SHADOW = (Uint32) &McbspaRegs.DXR1.all; // Start address = McBSPA DXR
DmaRegs.CH1.DST_BEG_ADDR_SHADOW = (Uint32) &McbspaRegs.DXR1.all; // Not needed unless using wrap function
DmaRegs.CH1.CONTROL.bit.PERINTCLR = 1; // Clear peripheral interrupt event flag
DmaRegs.CH1.CONTROL.bit.SYNCCLR = 1; // Clear sync flag
DmaRegs.CH1.CONTROL.bit.ERRCLR = 1; // Clear sync error flag
DmaRegs.CH1.DST_WRAP_SIZE = 0xFFFF; // Put to maximum - don't want destination wrap
DmaRegs.CH1.SRC_WRAP_SIZE = 0xFFFF; // Put to maximum - don't want source wrap
DmaRegs.CH1.MODE.bit.SYNCE = 0; // No sync signal
DmaRegs.CH1.MODE.bit.SYNCSEL = 0; // No sync signal
DmaRegs.CH1.MODE.bit.CHINTE = 1; // Enable channel interrupt
DmaRegs.CH1.MODE.bit.CHINTMODE = 1; // Interrupt at end of transfer
DmaRegs.CH1.MODE.bit.PERINTE = 1; // Enable peripheral interrupt event
DmaRegs.CH1.MODE.bit.PERINTSEL = DMA_MXEVTA; // Peripheral interrupt select = McBSP MXSYNCA
DmaRegs.CH1.CONTROL.bit.PERINTCLR = 1; // Clear any spurious interrupt flags
// Channel 2, McBSPA Receive
DmaRegs.CH2.MODE.bit.CHINTE = 0;
DmaRegs.CH2.BURST_SIZE.all = 0; // 1 word/burst
DmaRegs.CH2.SRC_BURST_STEP = 0; // no effect when using 1 word/burst
DmaRegs.CH2.DST_BURST_STEP = 0; // no effect when using 1 word/burst
DmaRegs.CH2.TRANSFER_SIZE = 127; // Interrupt every 127 bursts/transfer
DmaRegs.CH2.SRC_TRANSFER_STEP = 0; // Don't move source address
DmaRegs.CH2.DST_TRANSFER_STEP = 1; // Move to next word in buffer after each word in a burst
DmaRegs.CH2.SRC_ADDR_SHADOW = (Uint32) &McbspaRegs.DRR1.all; // Start address = McBSPA DRR
DmaRegs.CH2.SRC_BEG_ADDR_SHADOW = (Uint32) &McbspaRegs.DRR1.all; // Not needed unless using wrap function
DmaRegs.CH2.DST_ADDR_SHADOW = (Uint32) &rdata[0]; // Start address = Receive buffer (for McBSP-A)
DmaRegs.CH2.DST_BEG_ADDR_SHADOW = (Uint32) &rdata[0]; // Not needed unless using wrap function
DmaRegs.CH2.CONTROL.bit.PERINTCLR = 1; // Clear peripheral interrupt event flag
DmaRegs.CH2.CONTROL.bit.SYNCCLR = 1; // Clear sync flag
DmaRegs.CH2.CONTROL.bit.ERRCLR = 1; // Clear sync error flag
DmaRegs.CH2.DST_WRAP_SIZE = 0xFFFF; // Put to maximum - don't want destination wrap
DmaRegs.CH2.SRC_WRAP_SIZE = 0xFFFF; // Put to maximum - don't want source wrap
DmaRegs.CH2.MODE.bit.CHINTE = 1; // Enable channel interrupt
DmaRegs.CH2.MODE.bit.CHINTMODE = 1; // Interrupt at end of transfer
DmaRegs.CH2.MODE.bit.PERINTE = 1; // Enable peripheral interrupt event
DmaRegs.CH2.MODE.bit.PERINTSEL = DMA_MREVTA; // Peripheral interrupt select = McBSP MRSYNCA
DmaRegs.CH2.CONTROL.bit.PERINTCLR = 1; // Clear any spurious interrupt flags
EDIS;
}
// DMA Initialization for data size > 16-bit and <= 32-bit.
void init_dma_32()
{
EALLOW;
DmaRegs.DMACTRL.bit.HARDRESET = 1;
asm(" NOP"); // Only 1 NOP needed per Design
// Channel 1, McBSPA transmit
DmaRegs.CH1.BURST_SIZE.all = 1; // 2 word/burst
DmaRegs.CH1.SRC_BURST_STEP = 1; // increment 1 16-bit addr. btwn words
DmaRegs.CH1.DST_BURST_STEP = 1; // increment 1 16-bit addr. btwn words
DmaRegs.CH1.TRANSFER_SIZE = 63; // Interrupt every 63 bursts/transfer
DmaRegs.CH1.SRC_TRANSFER_STEP = 1; // Move to next word in buffer after each word in a burst
DmaRegs.CH1.DST_TRANSFER_STEP = 0xFFFF; // Go back to DXR2
DmaRegs.CH1.SRC_ADDR_SHADOW = (Uint32) &sdata[0]; // Start address = buffer
DmaRegs.CH1.SRC_BEG_ADDR_SHADOW = (Uint32) &sdata[0]; // Not needed unless using wrap function
DmaRegs.CH1.DST_ADDR_SHADOW = (Uint32) &McbspaRegs.DXR2.all; // Start address = McBSPA DXR2
DmaRegs.CH1.DST_BEG_ADDR_SHADOW = (Uint32) &McbspaRegs.DXR2.all; // Not needed unless using wrap function
DmaRegs.CH1.CONTROL.bit.SYNCCLR = 1; // Clear sync flag
DmaRegs.CH1.CONTROL.bit.ERRCLR = 1; // Clear sync error flag
DmaRegs.CH1.DST_WRAP_SIZE = 0xFFFF; // Put to maximum - don't want destination wrap
DmaRegs.CH1.SRC_WRAP_SIZE = 0xFFFF; // Put to maximum - don't want source wrap
DmaRegs.CH1.MODE.bit.SYNCE = 0; // No sync signal
DmaRegs.CH1.MODE.bit.SYNCSEL = 0; // No sync signal
DmaRegs.CH1.MODE.bit.CHINTE = 1; // Enable channel interrupt
DmaRegs.CH1.MODE.bit.CHINTMODE = 1; // Interrupt at end of transfer
DmaRegs.CH1.MODE.bit.PERINTE = 1; // Enable peripheral interrupt event
DmaRegs.CH1.MODE.bit.PERINTSEL = DMA_MXEVTA; // Peripheral interrupt select = McBSP MXSYNCA
DmaRegs.CH1.CONTROL.bit.PERINTCLR = 1; // Clear any spurious interrupt flags
// Channel 2, McBSPA Receive
DmaRegs.CH2.BURST_SIZE.all = 1; // 2 words/burst
DmaRegs.CH2.SRC_BURST_STEP = 1; // Increment 1 16-bit addr. btwn words
DmaRegs.CH2.DST_BURST_STEP = 1; // Increment 1 16-bit addr. btwn words
DmaRegs.CH2.TRANSFER_SIZE = 63; // Interrupt every 63 bursts/transfer
DmaRegs.CH2.SRC_TRANSFER_STEP = 0xFFFF; // Decrement back to DRR2
DmaRegs.CH2.DST_TRANSFER_STEP = 1; // Move to next word in buffer after each word in a burst
DmaRegs.CH2.SRC_ADDR_SHADOW = (Uint32) &McbspaRegs.DRR2.all; // Start address = McBSPA DRR
DmaRegs.CH2.SRC_BEG_ADDR_SHADOW = (Uint32) &McbspaRegs.DRR2.all; // Not needed unless using wrap function
DmaRegs.CH2.DST_ADDR_SHADOW = (Uint32) &rdata[0]; // Start address = Receive buffer (for McBSP-A)
DmaRegs.CH2.DST_BEG_ADDR_SHADOW = (Uint32) &rdata[0]; // Not needed unless using wrap function
DmaRegs.CH2.CONTROL.bit.SYNCCLR = 1; // Clear sync flag
DmaRegs.CH2.CONTROL.bit.ERRCLR = 1; // Clear sync error flag
DmaRegs.CH2.DST_WRAP_SIZE = 0xFFFF; // Put to maximum - don't want destination wrap
DmaRegs.CH2.SRC_WRAP_SIZE = 0xFFFF; // Put to maximum - don't want source wrap
DmaRegs.CH2.MODE.bit.CHINTE = 1; // Enable channel interrupt
DmaRegs.CH2.MODE.bit.CHINTMODE = 1; // Interrupt at end of transfer
DmaRegs.CH2.MODE.bit.PERINTE = 1; // Enable peripheral interrupt event
DmaRegs.CH2.MODE.bit.PERINTSEL = DMA_MREVTA; // Peripheral interrupt select = McBSP MRSYNCA
DmaRegs.CH2.CONTROL.bit.PERINTCLR = 1; // Clear any spurious interrupt flags
EDIS;
}
void start_dma (void)
{
EALLOW;
DmaRegs.CH1.CONTROL.bit.RUN = 1; // Start DMA Transmit from McBSP-A
DmaRegs.CH2.CONTROL.bit.RUN = 1; // Start DMA Receive from McBSP-A
EDIS;
}
// INT7.1
interrupt void local_D_INTCH1_ISR(void) // DMA Ch1
{
EALLOW; // NEED TO EXECUTE EALLOW INSIDE ISR !!!
DmaRegs.CH1.CONTROL.bit.RUN=0; // Re-enable DMA CH1. Should be done every transfer
PieCtrlRegs.PIEACK.all = PIEACK_GROUP7; // To receive more interrupts from this PIE group, acknowledge this interrupt
EDIS;
return;
}
// INT7.2
interrupt void local_D_INTCH2_ISR(void) // DMA Ch2
{
Uint16 i;
EALLOW; // NEED TO EXECUTE EALLOW INSIDE ISR !!!
DmaRegs.CH2.CONTROL.bit.RUN = 0; // Re-enable DMA CH2. Should be done every transfer
PieCtrlRegs.PIEACK.all = PIEACK_GROUP7; // To receive more interrupts from this PIE group, acknowledge this interrupt
for (i=0; i<128; i++)
{
if(data_size == 8)
{
if( (rdata[i]&0x00FF) !=(sdata[i]&0x00FF)) error( ); // Check for correct received data
}
else if (data_size == 16)
{
if (rdata[i] != sdata[i]) error(); // STOP if there is an error !!
}
else if (data_size == 32)
{
if ((rdata[i])!=(sdata[i])) error ();
}
}
EDIS;
return;
}
//===========================================================================
// No more.
//===========================================================================

View File

@@ -0,0 +1,22 @@
menuitem "DSP2833x McBSP DMA"
hotmenu Load_and_Build_Project()
{
GEL_ProjectLoad("Example_2833xMcBSP_DLB_DMA.pjt");
GEL_ProjectBuild("Example_2833xMcBSP_DLB_DMA.pjt");
Setup_WatchWindow();
}
hotmenu Load_Code()
{
GEL_Load(".\\debug\\Example_2833xMcBSP_DLB_DMA.out");
Setup_WatchWindow();
}
hotmenu Setup_WatchWindow()
{
GEL_WatchReset();
GEL_WatchAdd("rdata,x");
GEL_WatchAdd("sdata,x");
}

View File

@@ -0,0 +1,52 @@
; Code Composer Project File, Version 2.0 (do not modify or remove this line)
[Project Settings]
ProjectName="DSP2833x"
ProjectDir="C:\tidcs\c28\DSP2833x\v120\DSP2833x_examples\mcbsp_loopback_dma\"
ProjectType=Executable
CPUFamily=TMS320C28XX
Tool="Compiler"
Tool="CustomBuilder"
Tool="DspBiosBuilder"
Tool="Linker"
Config="Debug"
Config="Release"
[Source Files]
Source="..\..\DSP2833x_common\source\DSP2833x_ADC_cal.asm"
Source="..\..\DSP2833x_common\source\DSP2833x_CodeStartBranch.asm"
Source="..\..\DSP2833x_common\source\DSP2833x_DefaultIsr.c"
Source="..\..\DSP2833x_common\source\DSP2833x_McBSP.c"
Source="..\..\DSP2833x_common\source\DSP2833x_PieCtrl.c"
Source="..\..\DSP2833x_common\source\DSP2833x_PieVect.c"
Source="..\..\DSP2833x_common\source\DSP2833x_SysCtrl.c"
Source="..\..\DSP2833x_common\source\DSP2833x_usDelay.asm"
Source="..\..\DSP2833x_headers\source\DSP2833x_GlobalVariableDefs.c"
Source="Example_2833xMcBSP_DLB_DMA.c"
Source="..\..\DSP2833x_common\cmd\28335_RAM_lnk.cmd"
Source="..\..\DSP2833x_headers\cmd\DSP2833x_Headers_nonBIOS.cmd"
["Compiler" Settings: "Debug"]
Options=-g -q -pdr -as -fr"C:\tidcs\c28\DSP2833x\v120\DSP2833x_examples\mcbsp_loopback_dma\Debug" -fs"C:\tidcs\c28\DSP2833x\v120\DSP2833x_examples\mcbsp_loopback_dma\Debug" -i"..\..\DSP2833x_headers\include" -i"..\..\DSP2833x_common\include" -d"_DEBUG" -d"LARGE_MODEL" --float_support=fpu32 -ml -mt -v28
["Compiler" Settings: "Release"]
Options=-q -o3 -fr"C:\tidcs\c28\DSP2833x\v120\DSP2833x_examples\mcbsp_loopback_dma\Release" -d"LARGE_MODEL" -ml -v28
["DspBiosBuilder" Settings: "Debug"]
Options=-v28
["DspBiosBuilder" Settings: "Release"]
Options=-v28
["Linker" Settings: "Debug"]
Options=-q -c -m".\Debug\Example_2833xMcBSP_DLB_DMA.map" -o".\Debug\Example_2833xMcBSP_DLB_DMA.out" -stack0x380 -w -x -i"..\..\DSP2833x_headers\include" -l"rts2800_fpu32.lib"
["Linker" Settings: "Release"]
Options=-q -c -o".\Release\Example_2833xMcBSP_DLB_DMA.out" -x
["..\..\DSP2833x_common\cmd\28335_RAM_lnk.cmd" Settings: "Debug"]
LinkOrder=1
["..\..\DSP2833x_common\cmd\28335_RAM_lnk.cmd" Settings: "Release"]
LinkOrder=1