init commit.

Проект каким он достался от Димы.
This commit is contained in:
2021-02-15 09:56:02 +03:00
commit b8a0477c5c
294 changed files with 72365 additions and 0 deletions

View File

@@ -0,0 +1,477 @@
// TI File $Revision: /main/14 $
// Checkin $Date: June 23, 2008 08:58:36 $
//###########################################################################
//
// FILE: Example_2833xHRPWM_SFO_V5.c
//
// TITLE: DSP2833x Device HRPWM SFO V5 example
//
// ASSUMPTIONS:
//
//
// This program requires the DSP2833x header files, which include
// the following files required for this example:
// SFO_V5.h and SFO_TI_Build_V5B_fpu.lib (or SFO_TI_Build_V5B.lib for fixed point)
//
//
// !!NOTE!!
// By default, this example project is configured for floating-point math. All included libraries
// must be pre-compiled for floating-point math.
//
// Therefore, SFO_TI_Build_V5B_fpu.lib (compiled for floating-point) is included in the
// project instead of the SFO_TI_Build_V5B.lib (compiled for fixed-point).
//
// To convert the example for fixed-point math, follow the instructions in sfo_readme.txt
// in the /doc directory of the header files and peripheral examples package.
//
//
// Monitor the following pins on an oscilloscope:
// ePWM1A (GPIO0)
// ePWM2A (GPIO2)
// ePWM3A (GPIO4)
// ePWM4A (GPIO6)
// ePWM5A (GPIO8)
// ePWM6A (GPIO10)
//
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
// DESCRIPTION:
//
// This example modifies the MEP control registers to show edge displacement
// due to the HRPWM control extension of the respective ePWM module.
//
// This example calls the following TI's MEP Scale Factor Optimizer (SFO)
// software library V5 functions:
//
//
// int SFO_MepEn_V5(int i);
// updates MEP_ScaleFactor[i] dynamically when HRPWM is in use.
// - returns 1 when complete for the specified channel
// - returns 0 if not complete for the specified channel
// - returns 2 if there is a scale factor out-of-range error
// (MEP_ScaleFactor[n] differs from seed MEP_ScaleFactor[0]
// by more than +/-15). To remedy this:
// 1. Check your software to make sure MepEn completes for
// 1 channel before calling MepEn for another channel.
// 2. Re-run MepDis and re-seed MEP_ScaleFactor[0]. Then
// try again.
// 3. If reason is known and acceptable, treat return of "2"
// like a return of "1", indicating calibration complete.
//
// int SFO_MepDis_V5(int i);
// updates MEP_ScaleFactor[i] when HRPWM is not used
// - returns 1 when complete for the specified channel
// - returns 0 if not complete for the specified channel
//
// MEP_ScaleFactor[PWM_CH] is a global array variable used by the SFO library
//
// =======================================================================
// NOTE: For more information on using the SFO software library, see the
// High-Resolution Pulse Width Modulator (HRPWM) Reference Guide (spru924)
// =======================================================================
//
// This example is intended to explain the HRPWM capabilities. The code can be
// optimized for code efficiency. Refer to TI's Digital power application
// examples and TI Digital Power Supply software libraries for details.
//
// All ePWM1A-6A channels will have fine
// edge movement due to the HRPWM logic
//
// 5MHz PWM (for 150 MHz SYSCLKOUT), ePWMxA toggle high/low with MEP control on rising edge
// 3.33MHz PWM (for 100 MHz SYSCLKOUT), ePWMxA toggle high/low with MEP control on rising edge
//
// To load and run this example:
// 1. **!!IMPORTANT!!** - in SFO_V5.h, set PWM_CH to the max number of
// HRPWM channels plus one. For example, for the F28335, the
// maximum number of HRPWM channels is 6. 6+1=7, so set
// #define PWM_CH 7 in SFO_V5.h. (Default is 7)
// 2. Run this example at 150/100MHz SYSCLKOUT
// 3. Load the Example_2833xHRPWM_SFO.gel and observe variables in the watch window
// 4. Activate Real time mode
// 5. Run the code
// 6. Watch ePWM1-6 waveforms on a Oscillosope
// 7. In the watch window:
// Set the variable UpdateFine = 1 to observe the ePWMxA output
// with HRPWM capabilites (default)
// Observe the duty cycle of the waveform changes in fine MEP steps
// 8. In the watch window:
// Change the variable UpdateFine to 0, to observe the
// ePWMxA output without HRPWM capabilites
// Observe the duty cycle of the waveform changes in coarse steps of 10nsec.
//
// Watch Variables:
// UpdateFine
// MEP_ScaleFactor
// EPwm1Regs.CMPA.all
// EPwm2Regs.CMPA.all
// EPwm3Regs.CMPA.all
// EPwm4Regs.CMPA.all
// EPwm5Regs.CMPA.all
// EPwm6Regs.CMPA.all
//
//###########################################################################
// $TI Release: DSP2833x/DSP2823x Header Files V1.20 $
// $Release Date: August 1, 2008 $
//###########################################################################
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
#include "DSP2833x_EPwm_defines.h" // useful defines for initialization
#include "SFO_V5.h" // SFO V5 library headerfile - required to use SFO library functions
// **!!IMPORTANT!!**
// UPDATE NUMBER OF HRPWM CHANNELS + 1 USED IN SFO_V5.H
// i.e. #define PWM_CH // F28335 has a maximum of 6 HRPWM channels (7=6+1)
// Declare your function prototypes here
//---------------------------------------------------------------
void HRPWM_Config(int);
void error (void);
// General System nets - Useful for debug
Uint16 UpdateFine, DutyFine, status, nMepChannel;
//====================================================================
// The following declarations are required in order to use the SFO
// library functions:
//
int MEP_ScaleFactor[PWM_CH]; // Global array used by the SFO library
// For n HRPWM channels + 1 for MEP_ScaleFactor[0]
// Array of pointers to EPwm register structures:
// *ePWM[0] is defined as dummy value not used in the example
volatile struct EPWM_REGS *ePWM[PWM_CH] =
{ &EPwm1Regs, &EPwm1Regs, &EPwm2Regs, &EPwm3Regs,
&EPwm4Regs, &EPwm5Regs, &EPwm6Regs};
//====================================================================
void main(void)
{
// Local variables
int i;
Uint32 temp;
int16 CMPA_reg_val, CMPAHR_reg_val;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// For this case just init GPIO pins for ePWM1-ePWM6
// This function is in the DSP2833x_EPwm.c file
InitEPwmGpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
// For this example, only initialize the ePWM
// Step 5. User specific code, enable interrupts:
UpdateFine = 1;
DutyFine = 0;
nMepChannel=1; // HRPWM diagnostics start on ePWM channel 1
EALLOW;
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;
EDIS;
// MEP_ScaleFactor variables intialization for SFO library functions
for(i=0;i<PWM_CH;i++)
{
MEP_ScaleFactor[i] =0;
}
// MEP_ScaleFactor variables intialization using SFO_MepDis_V5 library function.
EALLOW;
for(i=1;i<PWM_CH;i++)
{
(*ePWM[i]).HRCNFG.bit.EDGMODE = 1; // Enable HRPWM logic for channel prior to calibration
while ( SFO_MepDis_V5(i) == SFO_INCOMPLETE ); //returns "0" when cal. incomplete for channel
}
EDIS;
// Initialize a common seed variable MEP_ScaleFactor[0] required for all SFO functions
MEP_ScaleFactor[0] = MEP_ScaleFactor[1];
// Some useful Period vs Frequency values
// SYSCLKOUT = 150MHz 100 MHz
// -----------------------------------------
// Period Frequency Frequency
// 1000 150 kHz 100 KHz
// 800 187 kHz 125 KHz
// 600 250 kHz 167 KHz
// 500 300 kHz 200 KHz
// 250 600 kHz 400 KHz
// 200 750 kHz 500 KHz
// 100 1.5 MHz 1.0 MHz
// 50 3.0 MHz 2.0 MHz
// 25 6.0 MHz 4.0 MHz
// 20 7.5 MHz 5.0 MHz
// 12 12.5 MHz 8.33 MHz
// 10 15.0 MHz 10.0 MHz
// 9 16.7 MHz 11.1 MHz
// 8 18.8 MHz 12.5 MHz
// 7 21.4 MHz 14.3 MHz
// 6 25.0 MHz 16.7 MHz
// 5 30.0 MHz 20.0 MHz
//====================================================================
// ePWM and HRPWM register initialization
//====================================================================
HRPWM_Config(30); // ePWMx target, 5 MHz PWM (150MHz SYSCLKOUT)/3.33 MHz PWM (100MHz SYSCLKOUT)
EALLOW;
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;
EDIS;
for(;;)
{
// Sweep DutyFine as a Q15 number from 0.2 - 0.999
for(DutyFine = 0x2300; DutyFine < 0x7000; DutyFine++)
{
if(UpdateFine)
{
/*
// CMPA_reg_val is calculated as a Q0.
// Since DutyFine is a Q15 number, and the period is Q0
// the product is Q15. So to store as a Q0, we shift right
// 15 bits.
CMPA_reg_val = ((long)DutyFine * EPwm1Regs.TBPRD)>>15;
// This next step is to obtain the remainder which was
// truncated during our 15 bit shift above.
// compute the whole value, and then subtract CMPA_reg_val
// shifted LEFT 15 bits:
temp = ((long)DutyFine * EPwm1Regs.TBPRD) ;
temp = temp - ((long)CMPA_reg_val<<15);
// This obtains the MEP count in digits, from
// 0,1, .... MEP_Scalefactor. Once again since this is Q15
// convert to Q0 by shifting:
CMPAHR_reg_val = (temp*MEP_ScaleFactor[1])>>15;
// Now the lower 8 bits contain the MEP count.
// Since the MEP count needs to be in the upper 8 bits of
// the 16 bit CMPAHR register, shift left by 8.
CMPAHR_reg_val = CMPAHR_reg_val << 8;
// Add the offset and rounding
CMPAHR_reg_val += 0x0180;
// Write the values to the registers as one 32-bit or two 16-bits
EPwm1Regs.CMPA.half.CMPA = CMPA_reg_val;
EPwm1Regs.CMPA.half.CMPAHR = CMPAHR_reg_val;
*/
// All the above operations may be condensed into
// the following form for each channel:
// EPWM calculations where EPwm1Regs are accessed
// by (*ePWM[1]), EPwm2Regs are accessed by (*ePWM[2]),
// etc.:
for(i=1;i<PWM_CH;i++)
{
CMPA_reg_val = ((long)DutyFine * (*ePWM[i]).TBPRD)>>15;
temp = ((long)DutyFine * (*ePWM[i]).TBPRD) ;
temp = temp - ((long)CMPA_reg_val<<15);
CMPAHR_reg_val = (temp*MEP_ScaleFactor[i])>>15;
CMPAHR_reg_val = CMPAHR_reg_val << 8;
CMPAHR_reg_val += 0x0180;
// Example for a 32 bit write to CMPA:CMPAHR
(*ePWM[i]).CMPA.all = ((long)CMPA_reg_val)<<16 | CMPAHR_reg_val;
}
}
else
{
// CMPA_reg_val is calculated as a Q0.
// Since DutyFine is a Q15 number, and the period is Q0
// the product is Q15. So to store as a Q0, we shift right
// 15 bits.
for(i=1;i<PWM_CH;i++)
{
(*ePWM[i]).CMPA.half.CMPA = ((long)DutyFine * (*ePWM[i]).TBPRD>>15);
}
}
// Call the scale factor optimizer lib function SFO_MepEn_V5()
// periodically to track for any changes due to temp/voltage.
// SFO_MepEn_V5 Calibration must be finished on one channel (return 1) before
// moving on to the next channel.
//
// *NOTE*: In this example, SFO_MepEn_V5 is called 700 times in a loop. For example
// purposes, this allows the CMPAHR and CMPA registers to change in such
// a way that when watching in "Continuous Refresh" mode, the user
// can see the CMPAHR register increment in fine steps to a certain point
// before the CMPA register increments in a coarse step. Normally,
// SFO_MepEn_V5 can be called once every so often in the background for
// a slow update with no for-loop.
for (i=0; i<700; i++) // Call SFO_MepEn_V5 700 times.
{
status = SFO_MepEn_V5(nMepChannel);
if (status == SFO_COMPLETE) // Once SFO_MepEn_V5 complete (returns 1)-
nMepChannel++; // move on to next channel
else if (status == SFO_OUTRANGE_ERROR) // If MEP_ScaleFactor[nMepChannel] differs
{ // from seed Mep_ScaleFactor[0] by more than
error(); // +/-15, status = 2 (out of range error)
}
if(nMepChannel==PWM_CH)
nMepChannel =1; // Once max channels reached, loop back to channel 1
}
} // end DutyFine for loop
} // end infinite for loop
} // end SFO_MepEn_V5
//=============================================================
// FUNCTION: HRPWM_Config
// DESCRIPTION: Configures all ePWM channels and sets up HRPWM
// on ePWMxA channels
//
// PARAMETERS: period - desired PWM period in TBCLK counts
// RETURN: N/A
//=============================================================
void HRPWM_Config(period)
{
Uint16 j;
// ePWM channel register configuration with HRPWM
// ePWMxA toggle low/high with MEP control on Rising edge
for (j=1;j<PWM_CH;j++)
{
(*ePWM[j]).TBCTL.bit.PRDLD = TB_IMMEDIATE; // set Immediate load
(*ePWM[j]).TBPRD = period-1; // PWM frequency = 1 / period
(*ePWM[j]).CMPA.half.CMPA = period / 2; // set duty 50% initially
(*ePWM[j]).CMPA.half.CMPAHR = (1 << 8); // initialize HRPWM extension
(*ePWM[j]).CMPB = period / 2; // set duty 50% initially
(*ePWM[j]).TBPHS.all = 0;
(*ePWM[j]).TBCTR = 0;
(*ePWM[j]).TBCTL.bit.CTRMODE = TB_COUNT_UP;
(*ePWM[j]).TBCTL.bit.PHSEN = TB_DISABLE;
(*ePWM[j]).TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE;
(*ePWM[j]).TBCTL.bit.HSPCLKDIV = TB_DIV1;
(*ePWM[j]).TBCTL.bit.CLKDIV = TB_DIV1;
(*ePWM[j]).TBCTL.bit.FREE_SOFT = 11;
(*ePWM[j]).CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
(*ePWM[j]).CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
(*ePWM[j]).CMPCTL.bit.SHDWAMODE = CC_SHADOW;
(*ePWM[j]).CMPCTL.bit.SHDWBMODE = CC_SHADOW;
(*ePWM[j]).AQCTLA.bit.ZRO = AQ_SET; // PWM toggle high/low
(*ePWM[j]).AQCTLA.bit.CAU = AQ_CLEAR;
(*ePWM[j]).AQCTLB.bit.ZRO = AQ_SET;
(*ePWM[j]).AQCTLB.bit.CBU = AQ_CLEAR;
EALLOW;
(*ePWM[j]).HRCNFG.all = 0x0;
(*ePWM[j]).HRCNFG.bit.EDGMODE = HR_FEP; // MEP control on falling edge
(*ePWM[j]).HRCNFG.bit.CTLMODE = HR_CMP;
(*ePWM[j]).HRCNFG.bit.HRLOAD = HR_CTR_ZERO;
EDIS;
}
}
//=============================================================
// FUNCTION: error
// DESCRIPTION: An error occurs when the MEP_ScaleFactor [n]
// calculated from SFO_MEPEn_V5 differs by > +/- 15
// from the Seed Value in MEP_ScaleFactor[0].
// SFO_MepEn_V5 returned a "2" (SFO_OUTRANGE_ERROR).
// The user should:
// (1) Re-run SFO_MepDis_V5 to re-calibrate
// an appropriate seed value.
// (2) Ensure the code is not calling Mep_En_V5
// on a different channel when it is currently
// still running on a channel. (Repetitively
// call Mep_En_V5 on current channel until an
// SFO_COMPLETE ( i.e. 1) is returned.
// (3) If the out-of-range condition is acceptable
// for the application, ignore the "2" and
// treat it as a "1" or SFO_COMPLETE.
//
// PARAMETERS: N/A
// RETURN: N/A
//=============================================================
void error (void)
{
ESTOP0; // Error - MEP_ScaleFactor out of range of Seed - rerun MepDis calibration.
}
// No more

View File

@@ -0,0 +1,58 @@
/*
// TI File $Revision: /main/5 $
// Checkin $Date: August 9, 2007 17:25:04 $
//###########################################################################
//
// This .gel file can be used to help load and build the example project.
// It should be unloaded from Code Composer Studio before loading another
// project.
//
//###########################################################################
// $TI Release: DSP2833x/DSP2823x Header Files V1.20 $
// $Release Date: August 1, 2008 $
//###########################################################################
//###########################################################################
// Test Description: Run this GEL on F28334
// The Watch window should give a Scale factor value of 67-70 for the HRPWM
// modules in the device. F28335 will have a maximum of 6 entries + 1 for
// MEP_ScaleFactor[0].
//###########################################################################
*/
menuitem "DSP2833x HRPWM SFO V5"
hotmenu Load_and_Build_Project()
{
GEL_ProjectLoad("Example_2833xHRPWM_SFO_V5.pjt");
GEL_ProjectBuild("Example_2833xHRPWM_SFO_V5.pjt");
Setup_WatchWindow();
}
hotmenu Load_Code()
{
GEL_Load(".\\debug\\Example_2833xHRPWM_SFO_V5.out");
Setup_WatchWindow();
}
hotmenu Setup_WatchWindow()
{
GEL_WatchReset();
GEL_WatchAdd("UpdateFine");
GEL_WatchAdd("EPwm1Regs.CMPA.all");
GEL_WatchAdd("EPwm2Regs.CMPA.all");
GEL_WatchAdd("EPwm3Regs.CMPA.all");
GEL_WatchAdd("EPwm4Regs.CMPA.all");
GEL_WatchAdd("EPwm5Regs.CMPA.all");
GEL_WatchAdd("EPwm6Regs.CMPA.all");
GEL_WatchAdd("MEP_ScaleFactor");
GEL_WatchAdd("EPwm1Regs,x");
GEL_WatchAdd("EPwm2Regs,x");
GEL_WatchAdd("EPwm3Regs,x");
GEL_WatchAdd("EPwm4Regs,x");
GEL_WatchAdd("EPwm5Regs,x");
GEL_WatchAdd("EPwm6Regs,x");
}

View File

@@ -0,0 +1,53 @@
; Code Composer Project File, Version 2.0 (do not modify or remove this line)
[Project Settings]
ProjectName="DSP2833x"
ProjectDir="C:\tidcs\c28\DSP2833x\v120\DSP2833x_examples\hrpwm_sfo_v5\"
ProjectType=Executable
CPUFamily=TMS320C28XX
Tool="Compiler"
Tool="CustomBuilder"
Tool="DspBiosBuilder"
Tool="Linker"
Config="Debug"
Config="Release"
[Source Files]
Source="..\..\DSP2833x_common\lib\SFO_TI_Build_V5B_fpu.lib"
Source="..\..\DSP2833x_common\source\DSP2833x_ADC_cal.asm"
Source="..\..\DSP2833x_common\source\DSP2833x_CodeStartBranch.asm"
Source="..\..\DSP2833x_common\source\DSP2833x_DefaultIsr.c"
Source="..\..\DSP2833x_common\source\DSP2833x_EPwm.c"
Source="..\..\DSP2833x_common\source\DSP2833x_PieCtrl.c"
Source="..\..\DSP2833x_common\source\DSP2833x_PieVect.c"
Source="..\..\DSP2833x_common\source\DSP2833x_SysCtrl.c"
Source="..\..\DSP2833x_common\source\DSP2833x_usDelay.asm"
Source="..\..\DSP2833x_headers\source\DSP2833x_GlobalVariableDefs.c"
Source="Example_2833xHRPWM_SFO_V5.c"
Source="..\..\DSP2833x_common\cmd\28335_RAM_lnk.cmd"
Source="..\..\DSP2833x_headers\cmd\DSP2833x_Headers_nonBIOS.cmd"
["Compiler" Settings: "Debug"]
Options=-g -q -pdr -pdv -as -fr"C:\tidcs\c28\DSP2833x\v120\DSP2833x_examples\hrpwm_sfo_v5\Debug" -i"..\..\DSP2833x_headers\include" -i"..\..\DSP2833x_common\include" -d"_DEBUG" -d"LARGE_MODEL" --float_support=fpu32 -ml -mt -v28
["Compiler" Settings: "Release"]
Options=-q -o3 -fr"C:\tidcs\c28\DSP2833x\v120\DSP2833x_examples\hrpwm_sfo_v5\Release" -d"LARGE_MODEL" -ml -v28
["DspBiosBuilder" Settings: "Debug"]
Options=-v28
["DspBiosBuilder" Settings: "Release"]
Options=-v28
["Linker" Settings: "Debug"]
Options=-q -c -ecode_start -m".\Debug\Example_2833xHRPWM_SFO_V5.map" -o".\Debug\Example_2833xHRPWM_SFO_V5.out" -stack0x380 -w -x -i"..\..\DSP2833x_headers\include" -l"rts2800_fpu32.lib"
["Linker" Settings: "Release"]
Options=-q -c -o".\Release\Example_2833xHRPWM_SFO_V5.out" -x
["..\..\DSP2833x_headers\source\DSP2833x_GlobalVariableDefs.c" Settings: "Debug"]
LinkOrder=1
["..\..\DSP2833x_headers\cmd\DSP2833x_Headers_nonBIOS.cmd" Settings: "Debug"]
LinkOrder=2